-
Notifications
You must be signed in to change notification settings - Fork 6.5k
add test and doc for QwenImageEdit Plus #12363
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 4 commits
c4beb2a
17f192d
c979fe4
ecd6ad0
ef27c6e
b45ca9e
4fe851a
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,253 @@ | ||
| # Copyright 2025 The HuggingFace Team. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| import unittest | ||
|
|
||
| import numpy as np | ||
| import pytest | ||
| import torch | ||
| from PIL import Image | ||
| from transformers import Qwen2_5_VLConfig, Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor | ||
|
|
||
| from diffusers import ( | ||
| AutoencoderKLQwenImage, | ||
| FlowMatchEulerDiscreteScheduler, | ||
| QwenImageEditPlusPipeline, | ||
| QwenImageTransformer2DModel, | ||
| ) | ||
|
|
||
| from ...testing_utils import enable_full_determinism, torch_device | ||
| from ..pipeline_params import TEXT_TO_IMAGE_PARAMS | ||
| from ..test_pipelines_common import PipelineTesterMixin, to_np | ||
|
|
||
|
|
||
| enable_full_determinism() | ||
|
|
||
|
|
||
| class QwenImageEditPlusPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | ||
| pipeline_class = QwenImageEditPlusPipeline | ||
| params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | ||
| batch_params = frozenset(["prompt", "image"]) | ||
| image_params = frozenset(["image"]) | ||
| image_latents_params = frozenset(["latents"]) | ||
| required_optional_params = frozenset( | ||
| [ | ||
| "num_inference_steps", | ||
| "generator", | ||
| "latents", | ||
| "return_dict", | ||
| "callback_on_step_end", | ||
| "callback_on_step_end_tensor_inputs", | ||
| ] | ||
| ) | ||
| supports_dduf = False | ||
| test_xformers_attention = False | ||
| test_layerwise_casting = True | ||
| test_group_offloading = True | ||
|
|
||
| def get_dummy_components(self): | ||
| tiny_ckpt_id = "hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration" | ||
|
|
||
| torch.manual_seed(0) | ||
| transformer = QwenImageTransformer2DModel( | ||
| patch_size=2, | ||
| in_channels=16, | ||
| out_channels=4, | ||
| num_layers=2, | ||
| attention_head_dim=16, | ||
| num_attention_heads=3, | ||
| joint_attention_dim=16, | ||
| guidance_embeds=False, | ||
| axes_dims_rope=(8, 4, 4), | ||
| ) | ||
|
|
||
| torch.manual_seed(0) | ||
| z_dim = 4 | ||
| vae = AutoencoderKLQwenImage( | ||
| base_dim=z_dim * 6, | ||
| z_dim=z_dim, | ||
| dim_mult=[1, 2, 4], | ||
| num_res_blocks=1, | ||
| temperal_downsample=[False, True], | ||
| latents_mean=[0.0] * z_dim, | ||
| latents_std=[1.0] * z_dim, | ||
| ) | ||
|
|
||
| torch.manual_seed(0) | ||
| scheduler = FlowMatchEulerDiscreteScheduler() | ||
|
|
||
| torch.manual_seed(0) | ||
| config = Qwen2_5_VLConfig( | ||
| text_config={ | ||
| "hidden_size": 16, | ||
| "intermediate_size": 16, | ||
| "num_hidden_layers": 2, | ||
| "num_attention_heads": 2, | ||
| "num_key_value_heads": 2, | ||
| "rope_scaling": { | ||
| "mrope_section": [1, 1, 2], | ||
| "rope_type": "default", | ||
| "type": "default", | ||
| }, | ||
| "rope_theta": 1000000.0, | ||
| }, | ||
| vision_config={ | ||
| "depth": 2, | ||
| "hidden_size": 16, | ||
| "intermediate_size": 16, | ||
| "num_heads": 2, | ||
| "out_hidden_size": 16, | ||
| }, | ||
| hidden_size=16, | ||
| vocab_size=152064, | ||
| vision_end_token_id=151653, | ||
| vision_start_token_id=151652, | ||
| vision_token_id=151654, | ||
| ) | ||
| text_encoder = Qwen2_5_VLForConditionalGeneration(config) | ||
| tokenizer = Qwen2Tokenizer.from_pretrained(tiny_ckpt_id) | ||
|
|
||
| components = { | ||
| "transformer": transformer, | ||
| "vae": vae, | ||
| "scheduler": scheduler, | ||
| "text_encoder": text_encoder, | ||
| "tokenizer": tokenizer, | ||
| "processor": Qwen2VLProcessor.from_pretrained(tiny_ckpt_id), | ||
| } | ||
| return components | ||
|
|
||
| def get_dummy_inputs(self, device, seed=0): | ||
| if str(device).startswith("mps"): | ||
| generator = torch.manual_seed(seed) | ||
| else: | ||
| generator = torch.Generator(device=device).manual_seed(seed) | ||
|
|
||
| image = Image.new("RGB", (32, 32)) | ||
| inputs = { | ||
| "prompt": "dance monkey", | ||
| "image": [image, image], | ||
| "negative_prompt": "bad quality", | ||
| "generator": generator, | ||
| "num_inference_steps": 2, | ||
| "true_cfg_scale": 1.0, | ||
| "height": 32, | ||
| "width": 32, | ||
| "max_sequence_length": 16, | ||
| "output_type": "pt", | ||
| } | ||
|
|
||
| return inputs | ||
|
|
||
| def test_inference(self): | ||
| device = "cpu" | ||
|
|
||
| components = self.get_dummy_components() | ||
| pipe = self.pipeline_class(**components) | ||
| pipe.to(device) | ||
| pipe.set_progress_bar_config(disable=None) | ||
|
|
||
| inputs = self.get_dummy_inputs(device) | ||
| image = pipe(**inputs).images | ||
| generated_image = image[0] | ||
| self.assertEqual(generated_image.shape, (3, 32, 32)) | ||
|
|
||
| # fmt: off | ||
| expected_slice = torch.tensor([[0.5637, 0.6341, 0.6001, 0.5620, 0.5794, 0.5498, 0.5757, 0.6389, 0.4174, 0.3597, 0.5649, 0.4894, 0.4969, 0.5255, 0.4083, 0.4986]]) | ||
| # fmt: on | ||
|
|
||
| generated_slice = generated_image.flatten() | ||
| generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]]) | ||
| self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-3)) | ||
|
|
||
| def test_attention_slicing_forward_pass( | ||
| self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | ||
| ): | ||
| if not self.test_attention_slicing: | ||
| return | ||
|
|
||
| components = self.get_dummy_components() | ||
| pipe = self.pipeline_class(**components) | ||
| for component in pipe.components.values(): | ||
| if hasattr(component, "set_default_attn_processor"): | ||
| component.set_default_attn_processor() | ||
| pipe.to(torch_device) | ||
| pipe.set_progress_bar_config(disable=None) | ||
|
|
||
| generator_device = "cpu" | ||
| inputs = self.get_dummy_inputs(generator_device) | ||
| output_without_slicing = pipe(**inputs)[0] | ||
|
|
||
| pipe.enable_attention_slicing(slice_size=1) | ||
| inputs = self.get_dummy_inputs(generator_device) | ||
| output_with_slicing1 = pipe(**inputs)[0] | ||
|
|
||
| pipe.enable_attention_slicing(slice_size=2) | ||
| inputs = self.get_dummy_inputs(generator_device) | ||
| output_with_slicing2 = pipe(**inputs)[0] | ||
|
|
||
| if test_max_difference: | ||
| max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | ||
| max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | ||
| self.assertLess( | ||
| max(max_diff1, max_diff2), | ||
| expected_max_diff, | ||
| "Attention slicing should not affect the inference results", | ||
| ) | ||
|
|
||
| def test_vae_tiling(self, expected_diff_max: float = 0.2): | ||
| generator_device = "cpu" | ||
| components = self.get_dummy_components() | ||
|
|
||
| pipe = self.pipeline_class(**components) | ||
| pipe.to("cpu") | ||
| pipe.set_progress_bar_config(disable=None) | ||
|
|
||
| # Without tiling | ||
| inputs = self.get_dummy_inputs(generator_device) | ||
| inputs["height"] = inputs["width"] = 128 | ||
| output_without_tiling = pipe(**inputs)[0] | ||
|
|
||
| # With tiling | ||
| pipe.vae.enable_tiling( | ||
| tile_sample_min_height=96, | ||
| tile_sample_min_width=96, | ||
| tile_sample_stride_height=64, | ||
| tile_sample_stride_width=64, | ||
| ) | ||
| inputs = self.get_dummy_inputs(generator_device) | ||
| inputs["height"] = inputs["width"] = 128 | ||
| output_with_tiling = pipe(**inputs)[0] | ||
|
|
||
| self.assertLess( | ||
| (to_np(output_without_tiling) - to_np(output_with_tiling)).max(), | ||
| expected_diff_max, | ||
| "VAE tiling should not affect the inference results", | ||
| ) | ||
|
|
||
| @pytest.mark.xfail(condition=True, reason="Preconfigured embeddings need to be revisited.", strict=True) | ||
| def test_encode_prompt_works_in_isolation(self, extra_required_param_value_dict=None, atol=1e-4, rtol=1e-4): | ||
| super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict, atol, rtol) | ||
|
|
||
| @pytest.mark.xfail(condition=True, reason="Batch of multiple images needs to be revisited", strict=True) | ||
| def test_num_images_per_prompt(): | ||
| super().test_num_images_per_prompt() | ||
|
|
||
| @pytest.mark.xfail(condition=True, reason="Batch of multiple images needs to be revisited", strict=True) | ||
| def test_inference_batch_consistent(): | ||
| super().test_inference_batch_consistent() | ||
|
|
||
| @pytest.mark.xfail(condition=True, reason="Batch of multiple images needs to be revisited", strict=True) | ||
| def test_inference_batch_single_identical(): | ||
| super().test_inference_batch_single_identical() | ||
|
Comment on lines
+243
to
+253
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @naykun these are being There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yeah, let's fix this after the release~ |
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Since it's the speciality of
QwenImageEditPlusPipeline, I think we should have a section here.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sure
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do you want to include an example here for reference? 👀