-
Notifications
You must be signed in to change notification settings - Fork 6.4k
add test and doc for QwenImageEdit Plus #12363
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
c4beb2a
up
sayakpaul 17f192d
xfail some tests
sayakpaul c979fe4
Merge branch 'main' into qwenimage-edit-plus-followup
sayakpaul ecd6ad0
Merge branch 'main' into qwenimage-edit-plus-followup
sayakpaul ef27c6e
up
sayakpaul b45ca9e
Merge branch 'main' into qwenimage-edit-plus-followup
sayakpaul 4fe851a
up
sayakpaul File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
# Copyright 2025 The HuggingFace Team. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
from PIL import Image | ||
from transformers import Qwen2_5_VLConfig, Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor | ||
|
||
from diffusers import ( | ||
AutoencoderKLQwenImage, | ||
FlowMatchEulerDiscreteScheduler, | ||
QwenImageEditPlusPipeline, | ||
QwenImageTransformer2DModel, | ||
) | ||
|
||
from ...testing_utils import enable_full_determinism, torch_device | ||
from ..pipeline_params import TEXT_TO_IMAGE_PARAMS | ||
from ..test_pipelines_common import PipelineTesterMixin, to_np | ||
|
||
|
||
enable_full_determinism() | ||
|
||
|
||
class QwenImageEditPlusPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | ||
pipeline_class = QwenImageEditPlusPipeline | ||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | ||
batch_params = frozenset(["prompt", "image"]) | ||
image_params = frozenset(["image"]) | ||
image_latents_params = frozenset(["latents"]) | ||
required_optional_params = frozenset( | ||
[ | ||
"num_inference_steps", | ||
"generator", | ||
"latents", | ||
"return_dict", | ||
"callback_on_step_end", | ||
"callback_on_step_end_tensor_inputs", | ||
] | ||
) | ||
supports_dduf = False | ||
test_xformers_attention = False | ||
test_layerwise_casting = True | ||
test_group_offloading = True | ||
|
||
def get_dummy_components(self): | ||
tiny_ckpt_id = "hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration" | ||
|
||
torch.manual_seed(0) | ||
transformer = QwenImageTransformer2DModel( | ||
patch_size=2, | ||
in_channels=16, | ||
out_channels=4, | ||
num_layers=2, | ||
attention_head_dim=16, | ||
num_attention_heads=3, | ||
joint_attention_dim=16, | ||
guidance_embeds=False, | ||
axes_dims_rope=(8, 4, 4), | ||
) | ||
|
||
torch.manual_seed(0) | ||
z_dim = 4 | ||
vae = AutoencoderKLQwenImage( | ||
base_dim=z_dim * 6, | ||
z_dim=z_dim, | ||
dim_mult=[1, 2, 4], | ||
num_res_blocks=1, | ||
temperal_downsample=[False, True], | ||
latents_mean=[0.0] * z_dim, | ||
latents_std=[1.0] * z_dim, | ||
) | ||
|
||
torch.manual_seed(0) | ||
scheduler = FlowMatchEulerDiscreteScheduler() | ||
|
||
torch.manual_seed(0) | ||
config = Qwen2_5_VLConfig( | ||
text_config={ | ||
"hidden_size": 16, | ||
"intermediate_size": 16, | ||
"num_hidden_layers": 2, | ||
"num_attention_heads": 2, | ||
"num_key_value_heads": 2, | ||
"rope_scaling": { | ||
"mrope_section": [1, 1, 2], | ||
"rope_type": "default", | ||
"type": "default", | ||
}, | ||
"rope_theta": 1000000.0, | ||
}, | ||
vision_config={ | ||
"depth": 2, | ||
"hidden_size": 16, | ||
"intermediate_size": 16, | ||
"num_heads": 2, | ||
"out_hidden_size": 16, | ||
}, | ||
hidden_size=16, | ||
vocab_size=152064, | ||
vision_end_token_id=151653, | ||
vision_start_token_id=151652, | ||
vision_token_id=151654, | ||
) | ||
text_encoder = Qwen2_5_VLForConditionalGeneration(config) | ||
tokenizer = Qwen2Tokenizer.from_pretrained(tiny_ckpt_id) | ||
|
||
components = { | ||
"transformer": transformer, | ||
"vae": vae, | ||
"scheduler": scheduler, | ||
"text_encoder": text_encoder, | ||
"tokenizer": tokenizer, | ||
"processor": Qwen2VLProcessor.from_pretrained(tiny_ckpt_id), | ||
} | ||
return components | ||
|
||
def get_dummy_inputs(self, device, seed=0): | ||
if str(device).startswith("mps"): | ||
generator = torch.manual_seed(seed) | ||
else: | ||
generator = torch.Generator(device=device).manual_seed(seed) | ||
|
||
image = Image.new("RGB", (32, 32)) | ||
inputs = { | ||
"prompt": "dance monkey", | ||
"image": [image, image], | ||
"negative_prompt": "bad quality", | ||
"generator": generator, | ||
"num_inference_steps": 2, | ||
"true_cfg_scale": 1.0, | ||
"height": 32, | ||
"width": 32, | ||
"max_sequence_length": 16, | ||
"output_type": "pt", | ||
} | ||
|
||
return inputs | ||
|
||
def test_inference(self): | ||
device = "cpu" | ||
|
||
components = self.get_dummy_components() | ||
pipe = self.pipeline_class(**components) | ||
pipe.to(device) | ||
pipe.set_progress_bar_config(disable=None) | ||
|
||
inputs = self.get_dummy_inputs(device) | ||
image = pipe(**inputs).images | ||
generated_image = image[0] | ||
self.assertEqual(generated_image.shape, (3, 32, 32)) | ||
|
||
# fmt: off | ||
expected_slice = torch.tensor([[0.5637, 0.6341, 0.6001, 0.5620, 0.5794, 0.5498, 0.5757, 0.6389, 0.4174, 0.3597, 0.5649, 0.4894, 0.4969, 0.5255, 0.4083, 0.4986]]) | ||
# fmt: on | ||
|
||
generated_slice = generated_image.flatten() | ||
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]]) | ||
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-3)) | ||
|
||
def test_attention_slicing_forward_pass( | ||
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | ||
): | ||
if not self.test_attention_slicing: | ||
return | ||
|
||
components = self.get_dummy_components() | ||
pipe = self.pipeline_class(**components) | ||
for component in pipe.components.values(): | ||
if hasattr(component, "set_default_attn_processor"): | ||
component.set_default_attn_processor() | ||
pipe.to(torch_device) | ||
pipe.set_progress_bar_config(disable=None) | ||
|
||
generator_device = "cpu" | ||
inputs = self.get_dummy_inputs(generator_device) | ||
output_without_slicing = pipe(**inputs)[0] | ||
|
||
pipe.enable_attention_slicing(slice_size=1) | ||
inputs = self.get_dummy_inputs(generator_device) | ||
output_with_slicing1 = pipe(**inputs)[0] | ||
|
||
pipe.enable_attention_slicing(slice_size=2) | ||
inputs = self.get_dummy_inputs(generator_device) | ||
output_with_slicing2 = pipe(**inputs)[0] | ||
|
||
if test_max_difference: | ||
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | ||
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | ||
self.assertLess( | ||
max(max_diff1, max_diff2), | ||
expected_max_diff, | ||
"Attention slicing should not affect the inference results", | ||
) | ||
|
||
def test_vae_tiling(self, expected_diff_max: float = 0.2): | ||
generator_device = "cpu" | ||
components = self.get_dummy_components() | ||
|
||
pipe = self.pipeline_class(**components) | ||
pipe.to("cpu") | ||
pipe.set_progress_bar_config(disable=None) | ||
|
||
# Without tiling | ||
inputs = self.get_dummy_inputs(generator_device) | ||
inputs["height"] = inputs["width"] = 128 | ||
output_without_tiling = pipe(**inputs)[0] | ||
|
||
# With tiling | ||
pipe.vae.enable_tiling( | ||
tile_sample_min_height=96, | ||
tile_sample_min_width=96, | ||
tile_sample_stride_height=64, | ||
tile_sample_stride_width=64, | ||
) | ||
inputs = self.get_dummy_inputs(generator_device) | ||
inputs["height"] = inputs["width"] = 128 | ||
output_with_tiling = pipe(**inputs)[0] | ||
|
||
self.assertLess( | ||
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(), | ||
expected_diff_max, | ||
"VAE tiling should not affect the inference results", | ||
) | ||
|
||
@pytest.mark.xfail(condition=True, reason="Preconfigured embeddings need to be revisited.", strict=True) | ||
def test_encode_prompt_works_in_isolation(self, extra_required_param_value_dict=None, atol=1e-4, rtol=1e-4): | ||
super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict, atol, rtol) | ||
|
||
@pytest.mark.xfail(condition=True, reason="Batch of multiple images needs to be revisited", strict=True) | ||
def test_num_images_per_prompt(): | ||
super().test_num_images_per_prompt() | ||
|
||
@pytest.mark.xfail(condition=True, reason="Batch of multiple images needs to be revisited", strict=True) | ||
def test_inference_batch_consistent(): | ||
super().test_inference_batch_consistent() | ||
|
||
@pytest.mark.xfail(condition=True, reason="Batch of multiple images needs to be revisited", strict=True) | ||
def test_inference_batch_single_identical(): | ||
super().test_inference_batch_single_identical() | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@naykun these are being
xfail
ed for now because we have to fix how we handle a batch of batch of reference images. For the release, I think that's okay. But LMK.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yeah, let's fix this after the release~