Skip to content

Commit

Permalink
Add implementation of LevenbegMarquardt IK
Browse files Browse the repository at this point in the history
Simplify and Test on mujoco_simple_invk
  • Loading branch information
perezjln committed Jun 16, 2024
1 parent 2757da6 commit d37e586
Show file tree
Hide file tree
Showing 2 changed files with 122 additions and 28 deletions.
35 changes: 7 additions & 28 deletions examples/mujoco_simple_invk.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
import mujoco.viewer
import numpy as np

from gym_lowcostrobot.simulated_robot import SimulatedRobot
from gym_lowcostrobot.simulated_robot import LevenbegMarquardtIK


def displace_object(data, m, object_id, viewer, square_size=0.2, invert_y=False, origin_pos=[0, 0.1]):
Expand All @@ -20,24 +20,16 @@ def displace_object(data, m, object_id, viewer, square_size=0.2, invert_y=False,
# data.joint(object_id).qpos[:3] = [np.random.rand() * coef_sample + min_dist_obj, np.random.rand() * coef_sample + min_dist_obj, 0.01]
data.joint(object_id).qpos[:3] = [x, y, 0.01]

mujoco.mj_step(m, data)
mujoco.mj_forward(m, data)
viewer.sync()


def do_simple_trajectory_end_effector(current_pos, target_pos):
# Define the trajectory
nb_points = 10
traj = np.linspace(current_pos, target_pos, nb_points)
return traj


def do_simple_invk(robot_id="6dof", do_reset=False):
if robot_id == "6dof":
path_scene = "gym_lowcostrobot/assets/low_cost_robot_6dof/reach_cube.xml"
joint_name = "moving_side"
object_id = "cube"
nb_dof = 6
min_dist = 0.02
min_dist = 0.065
max_dist = 0.35
invert_y = False
square_size = 0.2
Expand All @@ -47,7 +39,6 @@ def do_simple_invk(robot_id="6dof", do_reset=False):

m = mujoco.MjModel.from_xml_path(path_scene)
data = mujoco.MjData(m)
robot = SimulatedRobot(m, data)

m.opt.timestep = 1 / 10000

Expand All @@ -60,27 +51,15 @@ def do_simple_invk(robot_id="6dof", do_reset=False):
# Run the simulation
while viewer.is_running():
step_start = time.time()
q_target_pos = robot.inverse_kinematics_reg(ee_target_pos=cube_pos, joint_name=joint_name, nb_dof=nb_dof, step=0.4)
q_target_pos[-1] = 0.0
robot.set_target_qpos(q_target_pos)

# Step the simulation forward
mujoco.mj_step(m, data)
viewer.sync()

# Rudimentary time keeping, will drift relative to wall clock.
time_until_next_step = m.opt.timestep - (time.time() - step_start)
if time_until_next_step > 0:
time.sleep(time_until_next_step)
g_ik = LevenbegMarquardtIK(m, data, tol=min_dist)
g_ik.calculate(body_id=m.body(joint_name).id, goal=cube_pos, viewer=viewer)

# Get the final position of the cube
cube_pos = data.joint(object_id).qpos[:3]
ee_id = m.body(joint_name).id
ee_pos = data.geom_xpos[ee_id]
print("Cube dist:", np.linalg.norm(cube_pos - ee_pos))
error = np.linalg.norm(np.subtract(cube_pos, data.body(m.body(joint_name).id).xpos))

if do_reset:
if np.linalg.norm(cube_pos - ee_pos) < min_dist or np.linalg.norm(cube_pos - ee_pos) > max_dist:
if error < min_dist or error > max_dist:
print("Cube reached the target position")

# displace_object(data, m, object_id, coef_sample, min_dist_obj, viewer)
Expand Down
115 changes: 115 additions & 0 deletions gym_lowcostrobot/simulated_robot.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,65 @@
import numpy as np


## https://alefram.github.io/posts/Basic-inverse-kinematics-in-Mujoco
#Levenberg-Marquardt method
class LevenbegMarquardtIK:

def __init__(self, model, data, tol=0.04, step_size=0.5):
self.model = model
self.data = data
self.jacp = np.zeros((3, model.nv)) #translation jacobian
self.jacr = np.zeros((3, model.nv)) #rotational jacobian
self.step_size = step_size
self.tol = tol
self.alpha = 0.5
self.damping = 0.15

def check_joint_limits(self, q):
"""Check if the joints is under or above its limits"""
for i in range(len(q)):
q[i] = max(self.model.jnt_range[i][0],
min(q[i], self.model.jnt_range[i][1]))

#Levenberg-Marquardt pseudocode implementation
def calculate(self, goal, body_id, viewer):

"""Calculate the desire joints angles for goal"""
current_pose = self.data.body(body_id).xpos
error = np.subtract(goal, current_pose)

while (np.linalg.norm(error) >= self.tol):

#calculate jacobian
mujoco.mj_jac(self.model, self.data, self.jacp, self.jacr, goal, body_id)

#calculate delta of joint q
n = self.jacp.shape[1]
I = np.identity(n)
product = self.jacp.T @ self.jacp + self.damping * I

if np.isclose(np.linalg.det(product), 0):
j_inv = np.linalg.pinv(product) @ self.jacp.T
else:
j_inv = np.linalg.inv(product) @ self.jacp.T

delta_q = j_inv @ error

#compute next step
self.data.qpos[:1] += self.step_size * delta_q

#check limits
#self.check_joint_limits(self.data.qpos)

#compute forward kinematics
mujoco.mj_forward(self.model, self.data)
viewer.sync()

#calculate new error
error = np.subtract(goal, self.data.body(body_id).xpos)
print("Error: ", np.linalg.norm(error))


class SimulatedRobot:
def __init__(self, m, d) -> None:
"""
Expand Down Expand Up @@ -131,5 +190,61 @@ def inverse_kinematics_reg(self, ee_target_pos, step=0.2, joint_name="end_effect

return q_target_pos

def inverse_kinematics_null_reg(self, ee_target_pos, step=0.2, joint_name="moving_side", nb_dof=6, regularization=1e-6, home_position=None, nullspace_weight=0.1):
"""
Computes the inverse kinematics for a robotic arm to reach the target end effector position.
:param ee_target_pos: numpy array of target end effector position [x, y, z]
:param step: float, step size for the iteration
:param joint_name: str, name of the end effector joint
:param nb_dof: int, number of degrees of freedom
:param regularization: float, regularization factor for the pseudoinverse computation
:param home_position: numpy array of home joint positions to regularize towards
:param nullspace_weight: float, weight for the nullspace regularization
:return: numpy array of target joint positions
"""
if home_position is None:
home_position = np.zeros(nb_dof) # Default to zero if no home position is provided

try:
# Get the joint ID from the name
joint_id = self.m.body(joint_name).id
except KeyError:
raise ValueError(f"Body name '{joint_name}' not found in the model.")

# Get the current end effector position
ee_id = self.m.body(joint_name).id
ee_pos = self.d.geom_xpos[ee_id]

# Compute the Jacobian
jac = np.zeros((3, self.m.nv))
mujoco.mj_jacBodyCom(self.m, self.d, jac, None, joint_id)
print(jac)

# Compute the difference between target and current end effector positions
delta_pos = ee_target_pos - ee_pos

# Compute the pseudoinverse of the Jacobian with regularization
jac_reg = jac[:, :nb_dof].T @ jac[:, :nb_dof] + regularization * np.eye(nb_dof)
jac_pinv = np.linalg.inv(jac_reg) @ jac[:, :nb_dof].T

# Compute target joint velocities
qdot = jac_pinv @ delta_pos

# Add nullspace regularization to keep joint positions close to the home position
qpos = self.d.qpos[:nb_dof]
nullspace_reg = nullspace_weight * (home_position - qpos)
qdot += nullspace_reg

# Normalize joint velocities to avoid excessive movements
qdot_norm = np.linalg.norm(qdot)
if qdot_norm > 1.0:
qdot /= qdot_norm

# Compute the new joint positions
q_target_pos = qpos + qdot * step

return q_target_pos

def set_target_qpos(self, target_pos):
self.d.ctrl = target_pos

0 comments on commit d37e586

Please sign in to comment.