Skip to content

Commit

Permalink
Merge branch 'user/michel-aractingi/13-11-2024-refactor-openx' of git…
Browse files Browse the repository at this point in the history
…hub.com:huggingface/lerobot into user/michel-aractingi/13-11-2024-refactor-openx
  • Loading branch information
michel-aractingi committed Dec 2, 2024
2 parents 7f3444c + 3a8bd89 commit dd18847
Show file tree
Hide file tree
Showing 76 changed files with 6,140 additions and 2,246 deletions.
2 changes: 1 addition & 1 deletion .github/PULL_REQUEST_TEMPLATE.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ Provide a simple way for the reviewer to try out your changes.

Examples:
```bash
DATA_DIR=tests/data pytest -sx tests/test_stuff.py::test_something
pytest -sx tests/test_stuff.py::test_something
```
```bash
python lerobot/scripts/train.py --some.option=true
Expand Down
8 changes: 1 addition & 7 deletions .github/workflows/nightly-tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,8 @@ on:
schedule:
- cron: "0 2 * * *"

env:
DATA_DIR: tests/data
# env:
# SLACK_API_TOKEN: ${{ secrets.SLACK_API_TOKEN }}

jobs:
run_all_tests_cpu:
name: CPU
Expand All @@ -30,13 +28,9 @@ jobs:
working-directory: /lerobot
steps:
- name: Tests
env:
DATA_DIR: tests/data
run: pytest -v --cov=./lerobot --disable-warnings tests

- name: Tests end-to-end
env:
DATA_DIR: tests/data
run: make test-end-to-end


Expand Down
5 changes: 1 addition & 4 deletions .github/workflows/test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@ jobs:
name: Pytest
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
Expand Down Expand Up @@ -70,7 +69,6 @@ jobs:
name: Pytest (minimal install)
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
Expand Down Expand Up @@ -103,12 +101,11 @@ jobs:
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
# TODO(aliberts, rcadene): redesign after v2 migration / removing hydra
end-to-end:
name: End-to-end
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
Expand Down
2 changes: 1 addition & 1 deletion CONTRIBUTING.md
Original file line number Diff line number Diff line change
Expand Up @@ -267,7 +267,7 @@ We use `pytest` in order to run the tests. From the root of the
repository, here's how to run tests with `pytest` for the library:

```bash
DATA_DIR="tests/data" python -m pytest -sv ./tests
python -m pytest -sv ./tests
```


Expand Down
14 changes: 7 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -153,10 +153,12 @@ python lerobot/scripts/visualize_dataset.py \
--episode-index 0
```

or from a dataset in a local folder with the root `DATA_DIR` environment variable (in the following case the dataset will be searched for in `./my_local_data_dir/lerobot/pusht`)
or from a dataset in a local folder with the `root` option and the `--local-files-only` (in the following case the dataset will be searched for in `./my_local_data_dir/lerobot/pusht`)
```bash
DATA_DIR='./my_local_data_dir' python lerobot/scripts/visualize_dataset.py \
python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--root ./my_local_data_dir \
--local-files-only 1 \
--episode-index 0
```

Expand Down Expand Up @@ -208,12 +210,10 @@ dataset attributes:

A `LeRobotDataset` is serialised using several widespread file formats for each of its parts, namely:
- hf_dataset stored using Hugging Face datasets library serialization to parquet
- videos are stored in mp4 format to save space or png files
- episode_data_index saved using `safetensor` tensor serialization format
- stats saved using `safetensor` tensor serialization format
- info are saved using JSON
- videos are stored in mp4 format to save space
- metadata are stored in plain json/jsonl files

Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can set the `DATA_DIR` environment variable to your root dataset folder as illustrated in the above section on dataset visualization.
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can use the `local_files_only` argument and specify its location with the `root` argument if it's not in the default `~/.cache/huggingface/lerobot` location.

### Evaluate a pretrained policy

Expand Down
2 changes: 1 addition & 1 deletion benchmarks/video/run_video_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -266,7 +266,7 @@ def benchmark_encoding_decoding(
)

ep_num_images = dataset.episode_data_index["to"][0].item()
width, height = tuple(dataset[0][dataset.camera_keys[0]].shape[-2:])
width, height = tuple(dataset[0][dataset.meta.camera_keys[0]].shape[-2:])
num_pixels = width * height
video_size_bytes = video_path.stat().st_size
images_size_bytes = get_directory_size(imgs_dir)
Expand Down
9 changes: 2 additions & 7 deletions examples/10_use_so100.md
Original file line number Diff line number Diff line change
Expand Up @@ -192,7 +192,6 @@ Record 2 episodes and upload your dataset to the hub:
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/so100.yaml \
--fps 30 \
--root data \
--repo-id ${HF_USER}/so100_test \
--tags so100 tutorial \
--warmup-time-s 5 \
Expand All @@ -212,18 +211,16 @@ echo ${HF_USER}/so100_test
If you didn't upload with `--push-to-hub 0`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--root data \
--repo-id ${HF_USER}/so100_test
```

## Replay an episode

Now try to replay the first episode on your robot:
```bash
DATA_DIR=data python lerobot/scripts/control_robot.py replay \
python lerobot/scripts/control_robot.py replay \
--robot-path lerobot/configs/robot/so100.yaml \
--fps 30 \
--root data \
--repo-id ${HF_USER}/so100_test \
--episode 0
```
Expand All @@ -232,7 +229,7 @@ DATA_DIR=data python lerobot/scripts/control_robot.py replay \

To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
DATA_DIR=data python lerobot/scripts/train.py \
python lerobot/scripts/train.py \
dataset_repo_id=${HF_USER}/so100_test \
policy=act_so100_real \
env=so100_real \
Expand All @@ -248,7 +245,6 @@ Let's explain it:
3. We provided an environment as argument with `env=so100_real`. This loads configurations from [`lerobot/configs/env/so100_real.yaml`](../lerobot/configs/env/so100_real.yaml).
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you can also use `device=mps` if you are using a Mac with Apple silicon, or `device=cpu` otherwise.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
6. We added `DATA_DIR=data` to access your dataset stored in your local `data` directory. If you dont provide `DATA_DIR`, your dataset will be downloaded from Hugging Face hub to your cache folder `$HOME/.cache/hugginface`. In future versions of `lerobot`, both directories will be in sync.

Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.

Expand All @@ -259,7 +255,6 @@ You can use the `record` function from [`lerobot/scripts/control_robot.py`](../l
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/so100.yaml \
--fps 30 \
--root data \
--repo-id ${HF_USER}/eval_act_so100_test \
--tags so100 tutorial eval \
--warmup-time-s 5 \
Expand Down
9 changes: 2 additions & 7 deletions examples/11_use_moss.md
Original file line number Diff line number Diff line change
Expand Up @@ -192,7 +192,6 @@ Record 2 episodes and upload your dataset to the hub:
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/moss.yaml \
--fps 30 \
--root data \
--repo-id ${HF_USER}/moss_test \
--tags moss tutorial \
--warmup-time-s 5 \
Expand All @@ -212,18 +211,16 @@ echo ${HF_USER}/moss_test
If you didn't upload with `--push-to-hub 0`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--root data \
--repo-id ${HF_USER}/moss_test
```

## Replay an episode

Now try to replay the first episode on your robot:
```bash
DATA_DIR=data python lerobot/scripts/control_robot.py replay \
python lerobot/scripts/control_robot.py replay \
--robot-path lerobot/configs/robot/moss.yaml \
--fps 30 \
--root data \
--repo-id ${HF_USER}/moss_test \
--episode 0
```
Expand All @@ -232,7 +229,7 @@ DATA_DIR=data python lerobot/scripts/control_robot.py replay \

To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
DATA_DIR=data python lerobot/scripts/train.py \
python lerobot/scripts/train.py \
dataset_repo_id=${HF_USER}/moss_test \
policy=act_moss_real \
env=moss_real \
Expand All @@ -248,7 +245,6 @@ Let's explain it:
3. We provided an environment as argument with `env=moss_real`. This loads configurations from [`lerobot/configs/env/moss_real.yaml`](../lerobot/configs/env/moss_real.yaml).
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you can also use `device=mps` if you are using a Mac with Apple silicon, or `device=cpu` otherwise.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
6. We added `DATA_DIR=data` to access your dataset stored in your local `data` directory. If you dont provide `DATA_DIR`, your dataset will be downloaded from Hugging Face hub to your cache folder `$HOME/.cache/hugginface`. In future versions of `lerobot`, both directories will be in sync.

Training should take several hours. You will find checkpoints in `outputs/train/act_moss_test/checkpoints`.

Expand All @@ -259,7 +255,6 @@ You can use the `record` function from [`lerobot/scripts/control_robot.py`](../l
python lerobot/scripts/control_robot.py record \
--robot-path lerobot/configs/robot/moss.yaml \
--fps 30 \
--root data \
--repo-id ${HF_USER}/eval_act_moss_test \
--tags moss tutorial eval \
--warmup-time-s 5 \
Expand Down
123 changes: 83 additions & 40 deletions examples/1_load_lerobot_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,78 +3,120 @@
It illustrates how to load datasets, manipulate them, and apply transformations suitable for machine learning tasks in PyTorch.
Features included in this script:
- Loading a dataset and accessing its properties.
- Filtering data by episode number.
- Converting tensor data for visualization.
- Saving video files from dataset frames.
- Viewing a dataset's metadata and exploring its properties.
- Loading an existing dataset from the hub or a subset of it.
- Accessing frames by episode number.
- Using advanced dataset features like timestamp-based frame selection.
- Demonstrating compatibility with PyTorch DataLoader for batch processing.
The script ends with examples of how to batch process data using PyTorch's DataLoader.
"""

from pathlib import Path
from pprint import pprint

import imageio
import torch
from huggingface_hub import HfApi

import lerobot
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata

# We ported a number of existing datasets ourselves, use this to see the list:
print("List of available datasets:")
pprint(lerobot.available_datasets)

# Let's take one for this example
repo_id = "lerobot/pusht"

# You can easily load a dataset from a Hugging Face repository
# You can also browse through the datasets created/ported by the community on the hub using the hub api:
hub_api = HfApi()
repo_ids = [info.id for info in hub_api.list_datasets(task_categories="robotics", tags=["LeRobot"])]
pprint(repo_ids)

# Or simply explore them in your web browser directly at:
# https://huggingface.co/datasets?other=LeRobot

# Let's take this one for this example
repo_id = "lerobot/aloha_mobile_cabinet"
# We can have a look and fetch its metadata to know more about it:
ds_meta = LeRobotDatasetMetadata(repo_id)

# By instantiating just this class, you can quickly access useful information about the content and the
# structure of the dataset without downloading the actual data yet (only metadata files — which are
# lightweight).
print(f"Total number of episodes: {ds_meta.total_episodes}")
print(f"Average number of frames per episode: {ds_meta.total_frames / ds_meta.total_episodes:.3f}")
print(f"Frames per second used during data collection: {ds_meta.fps}")
print(f"Robot type: {ds_meta.robot_type}")
print(f"keys to access images from cameras: {ds_meta.camera_keys=}\n")

print("Tasks:")
print(ds_meta.tasks)
print("Features:")
pprint(ds_meta.features)

# You can also get a short summary by simply printing the object:
print(ds_meta)

# You can then load the actual dataset from the hub.
# Either load any subset of episodes:
dataset = LeRobotDataset(repo_id, episodes=[0, 10, 11, 23])

# And see how many frames you have:
print(f"Selected episodes: {dataset.episodes}")
print(f"Number of episodes selected: {dataset.num_episodes}")
print(f"Number of frames selected: {dataset.num_frames}")

# Or simply load the entire dataset:
dataset = LeRobotDataset(repo_id)
print(f"Number of episodes selected: {dataset.num_episodes}")
print(f"Number of frames selected: {dataset.num_frames}")

# LeRobotDataset is actually a thin wrapper around an underlying Hugging Face dataset
# (see https://huggingface.co/docs/datasets/index for more information).
print(dataset)
print(dataset.hf_dataset)
# The previous metadata class is contained in the 'meta' attribute of the dataset:
print(dataset.meta)

# And provides additional utilities for robotics and compatibility with Pytorch
print(f"\naverage number of frames per episode: {dataset.num_samples / dataset.num_episodes:.3f}")
print(f"frames per second used during data collection: {dataset.fps=}")
print(f"keys to access images from cameras: {dataset.camera_keys=}\n")
# LeRobotDataset actually wraps an underlying Hugging Face dataset
# (see https://huggingface.co/docs/datasets for more information).
print(dataset.hf_dataset)

# Access frame indexes associated to first episode
# LeRobot datasets also subclasses PyTorch datasets so you can do everything you know and love from working
# with the latter, like iterating through the dataset.
# The __getitem__ iterates over the frames of the dataset. Since our datasets are also structured by
# episodes, you can access the frame indices of any episode using the episode_data_index. Here, we access
# frame indices associated to the first episode:
episode_index = 0
from_idx = dataset.episode_data_index["from"][episode_index].item()
to_idx = dataset.episode_data_index["to"][episode_index].item()

# LeRobot datasets actually subclass PyTorch datasets so you can do everything you know and love from working
# with the latter, like iterating through the dataset. Here we grab all the image frames.
frames = [dataset[idx]["observation.image"] for idx in range(from_idx, to_idx)]
# Then we grab all the image frames from the first camera:
camera_key = dataset.meta.camera_keys[0]
frames = [dataset[idx][camera_key] for idx in range(from_idx, to_idx)]

# Video frames are now float32 in range [0,1] channel first (c,h,w) to follow pytorch convention. To visualize
# them, we convert to uint8 in range [0,255]
frames = [(frame * 255).type(torch.uint8) for frame in frames]
# and to channel last (h,w,c).
frames = [frame.permute((1, 2, 0)).numpy() for frame in frames]
# The objects returned by the dataset are all torch.Tensors
print(type(frames[0]))
print(frames[0].shape)

# Finally, we save the frames to a mp4 video for visualization.
Path("outputs/examples/1_load_lerobot_dataset").mkdir(parents=True, exist_ok=True)
imageio.mimsave("outputs/examples/1_load_lerobot_dataset/episode_0.mp4", frames, fps=dataset.fps)
# Since we're using pytorch, the shape is in pytorch, channel-first convention (c, h, w).
# We can compare this shape with the information available for that feature
pprint(dataset.features[camera_key])
# In particular:
print(dataset.features[camera_key]["shape"])
# The shape is in (h, w, c) which is a more universal format.

# For many machine learning applications we need to load the history of past observations or trajectories of
# future actions. Our datasets can load previous and future frames for each key/modality, using timestamps
# differences with the current loaded frame. For instance:
delta_timestamps = {
# loads 4 images: 1 second before current frame, 500 ms before, 200 ms before, and current frame
"observation.image": [-1, -0.5, -0.20, 0],
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 20 ms, 10 ms, and current frame
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, -0.02, -0.01, 0],
camera_key: [-1, -0.5, -0.20, 0],
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 200 ms, 100 ms, and current frame
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, 0],
# loads 64 action vectors: current frame, 1 frame in the future, 2 frames, ... 63 frames in the future
"action": [t / dataset.fps for t in range(64)],
}
# Note that in any case, these delta_timestamps values need to be multiples of (1/fps) so that added to any
# timestamp, you still get a valid timestamp.

dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)
print(f"\n{dataset[0]['observation.image'].shape=}") # (4,c,h,w)
print(f"{dataset[0]['observation.state'].shape=}") # (8,c)
print(f"{dataset[0]['action'].shape=}\n") # (64,c)
print(f"\n{dataset[0][camera_key].shape=}") # (4, c, h, w)
print(f"{dataset[0]['observation.state'].shape=}") # (6, c)
print(f"{dataset[0]['action'].shape=}\n") # (64, c)

# Finally, our datasets are fully compatible with PyTorch dataloaders and samplers because they are just
# PyTorch datasets.
Expand All @@ -84,8 +126,9 @@
batch_size=32,
shuffle=True,
)

for batch in dataloader:
print(f"{batch['observation.image'].shape=}") # (32,4,c,h,w)
print(f"{batch['observation.state'].shape=}") # (32,8,c)
print(f"{batch['action'].shape=}") # (32,64,c)
print(f"{batch[camera_key].shape=}") # (32, 4, c, h, w)
print(f"{batch['observation.state'].shape=}") # (32, 5, c)
print(f"{batch['action'].shape=}") # (32, 64, c)
break
2 changes: 1 addition & 1 deletion examples/3_train_policy.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@
# For this example, no arguments need to be passed because the defaults are set up for PushT.
# If you're doing something different, you will likely need to change at least some of the defaults.
cfg = DiffusionConfig()
policy = DiffusionPolicy(cfg, dataset_stats=dataset.stats)
policy = DiffusionPolicy(cfg, dataset_stats=dataset.meta.stats)
policy.train()
policy.to(device)

Expand Down
Loading

0 comments on commit dd18847

Please sign in to comment.