Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
111 changes: 110 additions & 1 deletion tests/test_complex_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from sqlalchemy.sql.sqltypes import Integer, String

from datapipe.compute import Catalog, Pipeline, Table, build_compute, run_steps
from datapipe.datatable import DataStore
from datapipe.datatable import DataStore, DataTable
from datapipe.step.batch_generate import BatchGenerate
from datapipe.step.batch_transform import BatchTransform
from datapipe.store.database import TableStoreDB
Expand Down Expand Up @@ -429,3 +429,112 @@ def test_complex_transform_with_many_recordings_N1000(dbconn):
@pytest.mark.skip(reason="fails on sqlite")
def test_complex_transform_with_many_recordings_N10000(dbconn):
complex_transform_with_many_recordings(dbconn, N=10000)


def test_applying_prediction_on_best_model_only(dbconn) -> None:
# N = 100
N = 5
ds = DataStore(dbconn, create_meta_table=True)

catalog = Catalog(
{
"tbl_image": Table(
store=TableStoreDB(
dbconn,
"tbl_image",
[
Column("image_id", Integer, primary_key=True),
],
True,
)
),
"tbl_model": Table(
store=TableStoreDB(
dbconn,
"tbl_model",
[
Column("model_id", Integer, primary_key=True),
],
True,
)
),
"tbl_best_model": Table(
store=TableStoreDB(
dbconn,
"tbl_best_model",
[
Column("model_id", Integer, primary_key=True),
],
True,
)
),
"tbl_prediction": Table(
store=TableStoreDB(
dbconn,
"tbl_prediction",
[
Column("image_id", Integer, primary_key=True),
Column("model_id", Integer, primary_key=True),
],
True,
)
),
}
)

test_df__image = pd.DataFrame({"image_id": range(N)})
test_df__model = pd.DataFrame({"model_id": [0, 1, 2, 3, 4]})
test_df__best_model = pd.DataFrame({"model_id": [4]})

def inference_only_on_best_model(
df__image: pd.DataFrame,
df__model: pd.DataFrame,
df__best_model: pd.DataFrame,
idx: IndexDF,
):
df__prediction = pd.merge(df__image, df__model, how="cross")
return df__prediction[["image_id", "model_id"]]

pipeline = Pipeline(
[
BatchTransform(
func=inference_only_on_best_model,
inputs=[
"tbl_image", # image_id
"tbl_model", # model_id
Required("tbl_best_model"), # model_id
],
outputs=["tbl_prediction"],
transform_keys=["image_id", "model_id"],
),
]
)

steps = build_compute(ds, catalog, pipeline)

ds.get_table("tbl_image").store_chunk(test_df__image)
ds.get_table("tbl_model").store_chunk(test_df__model)
ds.get_table("tbl_best_model").store_chunk(test_df__best_model)

run_steps(ds, steps)

test__df_prediction = pd.DataFrame({"image_id": range(N), "model_id": [4] * N})
assert_df_equal(
ds.get_table("tbl_prediction").get_data(),
test__df_prediction,
index_cols=["image_id", "model_id"],
)

test_df__new_best_model = pd.DataFrame({"model_id": [3]})
dt__tbl_best_model: DataTable = ds.get_table("tbl_best_model")
dt__tbl_best_model.delete_by_idx(cast(IndexDF, dt__tbl_best_model.get_data()))
dt__tbl_best_model.store_chunk(test_df__new_best_model)

run_steps(ds, steps)

test__new_df_prediction = pd.DataFrame({"image_id": range(N), "model_id": [3] * N})
assert_df_equal(
ds.get_table("tbl_prediction").get_data(),
test__new_df_prediction,
index_cols=["image_id", "model_id"],
)
Loading