Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add length limit (maximum number of words) in generation #1378

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 90 additions & 8 deletions outlines/generate/api.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import datetime
import re
from copy import copy
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Iterator, List, Optional, Union
Expand Down Expand Up @@ -81,9 +82,18 @@ def is_stop_sequence_found(
]
)

def strip_stop_sequences(
self, sequence: str, stop_sequences: Optional[List[str]]
) -> str:
@staticmethod
def strip_max_words_sequences(sequence: str, max_words: Optional[int]) -> str:
if max_words is not None:
splits = sequence.split()
if len(splits) > max_words:
last_word = splits[-1]
sequence = sequence.rstrip(last_word).rstrip()

return sequence

@staticmethod
def strip_stop_sequences(sequence: str, stop_sequences: Optional[List[str]]) -> str:
"""Remove the stop sequences from the generated sequences.

Parameters
Expand Down Expand Up @@ -130,6 +140,7 @@ def __call__(
self,
prompts: Union[str, List[str]],
max_tokens: Optional[int] = None,
max_words: Optional[int] = None,
stop_at: Optional[Union[str, List[str]]] = None,
rng: Optional["torch.Generator"] = None,
) -> Union[FormattedOutput, List[FormattedOutput], List[List[FormattedOutput]]]:
Expand All @@ -147,7 +158,12 @@ def __call__(
generating the first token.
max_tokens
An integer representing maximum number of tokens that will be generated
(per prompt)
(per prompt). If both `max_tokens` and `max_words` are passed, it will
stop when the first one is reached
max_words
An integer representing maximum number of words that will be generated
(per prompt). If both `max_tokens` and `max_words` are passed, it will
stop when the first one is reached
stop_at
A string or list of strings at which the text generated will stop
rng
Expand Down Expand Up @@ -202,16 +218,29 @@ def __call__(
rng=rng,
)

# If we have max_words but no max_tokens, let's put a limit on the number of tokens
# so that we reduce the generation time and do not exceed context length if
# no stop token is met.
# A high estimation of average number of tokens per word in a multilanguage
# context is 2, let's take some precaution and increase it a bit to 3
if max_words and max_tokens is None:
max_tokens = 3 * max_words

while True:
try:
last_state = next(states)
if max_tokens or stop_sequences:
if max_tokens or max_words or stop_sequences:
token_ids = last_state.token_ids
generated_token_ids = self.get_generated_token_ids(
prompt_token_ids, token_ids
)
if max_tokens and len(generated_token_ids[0]) >= max_tokens:
break
if max_words and all(
len(sentence.split()) > max_words
for sentence in self.tokenizer.decode(generated_token_ids)
):
break
if stop_sequences and self.is_stop_sequence_found(
self.tokenizer.decode(generated_token_ids), stop_sequences
):
Expand All @@ -223,9 +252,13 @@ def __call__(
generated_token_ids = self.get_generated_token_ids(prompt_token_ids, token_ids)

generated = self.tokenizer.decode(generated_token_ids)
max_words_stripped = [
self.strip_max_words_sequences(sequence, max_words)
for sequence in generated
]
stripped = [
self.strip_stop_sequences(sequence, stop_sequences)
for sequence in generated
for sequence in max_words_stripped
]
formatted = [self.format_sequence(sequence) for sequence in stripped]

Expand All @@ -248,6 +281,7 @@ def stream(
self,
prompts: Union[str, List[str]],
max_tokens: Optional[int] = None,
max_words: Optional[int] = None,
stop_at: Optional[Union[str, List[str]]] = None,
rng: Optional["torch.Generator"] = None,
) -> Iterator[Union[List[str], str, List[List[str]]]]:
Expand Down Expand Up @@ -284,6 +318,9 @@ def stream(
if isinstance(stop_at, str):
stop_at = [stop_at]

if max_words and max_tokens is None:
max_tokens = 3 * max_words

stop_sequences = stop_at
num_samples = self.num_samples

Expand Down Expand Up @@ -328,9 +365,12 @@ def token_generator() -> Iterator[Union[List[str], str, List[List[str]]]]:
] * num_samples
num_generated = 0
is_stop_at_reached = [False for _ in range(batch_size)] * num_samples
is_max_words_at_reached = [False for _ in range(batch_size)] * num_samples
while True:
if (max_tokens and num_generated >= max_tokens) or all(
is_stop_at_reached
if (
(max_tokens and num_generated >= max_tokens)
or all(is_stop_at_reached)
or all(is_max_words_at_reached)
):
return
try:
Expand All @@ -340,6 +380,21 @@ def token_generator() -> Iterator[Union[List[str], str, List[List[str]]]]:
return
generated_token_ids = sequence.token_ids[:, -num_generated:]
generated_sequences = self.tokenizer.decode(generated_token_ids)
if max_words is not None:
is_max_words_at_reached = [
stop or len(generated_sequence.split()) > max_words
for generated_sequence, stop in zip(
generated_sequences, is_max_words_at_reached
)
]
generated_sequences = [
self.strip_max_words_sequences(sequence, max_words)
if stop
else sequence
for sequence, stop in zip(
generated_sequences, is_max_words_at_reached
)
]
if stop_sequences:
is_stop_at_reached = [
stop
Expand Down Expand Up @@ -473,16 +528,36 @@ def _format(self, sequences):
else:
return self.format_sequence(sequences)

@staticmethod
def reconstruct_till_max_words(sequence: str, max_words: Optional[int]) -> str:
if max_words is not None:
if len(sequence.split()) > max_words:
matches = re.findall(r"(\s*\S+)(\s*)", sequence)
return "".join(
word + whitespace for word, whitespace in matches[:max_words]
).rstrip()

return sequence

def __call__(
self,
prompts: Union[str, List[str]],
max_tokens: Optional[int] = None,
max_words: Optional[int] = None,
stop_at: Optional[Union[str, List[str]]] = None,
seed: Optional[int] = None,
**model_specific_params,
):
"""Generate text from a prompt of list of prompts."""

# If we have max_words but no max_tokens, let's put a limit on the number of tokens
# so that we reduce the generation time and do not exceed context length if
# no stop token is met.
# A high estimation of average number of tokens per word in a multilanguage
# context is 2, let's take some precaution and increase it a bit to 3
if max_words and max_tokens is None:
max_tokens = 3 * max_words

generation_params = self.prepare_generation_parameters(
max_tokens, stop_at, seed
)
Expand All @@ -495,6 +570,13 @@ def __call__(
**model_specific_params,
)

if isinstance(completions, str):
completions = self.reconstruct_till_max_words(completions, max_words)
else:
completions = [
self.reconstruct_till_max_words(seq, max_words) for seq in completions
]

return self._format(completions)

def stream(
Expand Down
11 changes: 11 additions & 0 deletions tests/generate/test_generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -245,6 +245,17 @@ def test_generate_text(request, model_fixture, sampler_name):
assert isinstance(res, str)


@pytest.mark.parametrize("sampler_name", ("greedy", "multinomial", "beam_search"))
@pytest.mark.parametrize("model_fixture", ALL_MODEL_FIXTURES)
def test_generate_text_max_words(request, model_fixture, sampler_name):
max_words = 5
model = request.getfixturevalue(model_fixture)
generator = generate.text(model, getattr(samplers, sampler_name)())
with enforce_not_implemented(model_fixture, sampler_name):
res = generator("Write a long sentence", max_words=max_words)
assert len(res.split()) <= max_words


@pytest.mark.parametrize("pattern", REGEX_PATTERNS)
@pytest.mark.parametrize("model_fixture", ALL_MODEL_FIXTURES)
def test_generate_regex(request, model_fixture, pattern):
Expand Down
94 changes: 94 additions & 0 deletions tests/generate/test_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -495,3 +495,97 @@ def test_expand_attention_masks(attention_masks, ancestors, expected_result):
def test_bias_logits(logits, indices_to_mask, expected):
masked_logits = bias_logits(logits, indices_to_mask)
assert torch.equal(masked_logits, expected)


def test_generator_max_words():
class MockFSM:
first_state = 0

def get_next_state(self, state, next_token_ids):
return 4

def get_next_instruction(self, *_):
return Generate([4])

def is_final_state(self, _):
return False # let's generate tokens for ever

def copy(self):
return self

class MockTokenizer:
def encode(self, _):
# Input: "test"
return torch.tensor([[0, 1, 2, 3]]), torch.tensor([[1, 1, 1, 1]])

def decode(self, tokens):
return [" ".join(["test" for _ in tokens[0]])]

class MockModel:
def __init__(self):
self.tokenizer = MockTokenizer()

def __call__(*_):
return torch.tensor([[0, 1, 2, 3, 4]], dtype=torch.float), None

class sampler:
def __init__(self):
self.samples = 1

def __call__(self, biased_logits, *_):
return torch.argmax(biased_logits, keepdims=True), torch.tensor([0]), None

generator = SequenceGenerator(MockFSM(), MockModel(), sampler(), "cpu")
result = generator("test", max_words=3)
assert result == "test test test"

sequence = generator.stream("test", max_words=3)
assert "".join(sequence) == "test test test"


def test_generator_max_tokens_from_max_words():
class MockFSM:
first_state = 0

def get_next_state(self, state, next_token_ids):
return 4

def get_next_instruction(self, *_):
return Generate([4])

def is_final_state(self, _):
return False # let's generate tokens for ever

def copy(self):
return self

class MockTokenizer:
def encode(self, _):
# Input: "test"
return torch.tensor([[0, 1, 2, 3]]), torch.tensor([[1, 1, 1, 1]])

def decode(self, tokens):
return [
"123456789"[: len(tokens[0])]
] # not generating any word seperated by white space

class MockModel:
def __init__(self):
self.tokenizer = MockTokenizer()

def __call__(*_):
return torch.tensor([[0, 1, 2, 3, 4]], dtype=torch.float), None

class sampler:
def __init__(self):
self.samples = 1

def __call__(self, biased_logits, *_):
return torch.argmax(biased_logits, keepdims=True), torch.tensor([0]), None

generator = SequenceGenerator(MockFSM(), MockModel(), sampler(), "cpu")
result = generator("test", max_words=2) # should generate max_words * 3 tokens
assert result == "123456"

sequence = generator.stream("test", max_words=2)
assert "".join(sequence) == "123456"
Loading