Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: remove the scalar type T from the Allocator trait #1397

Merged
merged 2 commits into from
Jun 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/dimensional_genericity.rs
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ fn reflect_wrt_hyperplane_with_dimensional_genericity<T: RealField, D: Dim>(
where
T: RealField,
D: Dim,
DefaultAllocator: Allocator<T, D>,
DefaultAllocator: Allocator<D>,
{
let n = plane_normal.as_ref(); // Get the underlying V.
vector - n * (n.dot(vector) * na::convert(2.0))
Expand Down
46 changes: 23 additions & 23 deletions nalgebra-lapack/Cargo.toml
Original file line number Diff line number Diff line change
@@ -1,47 +1,47 @@
[package]
name = "nalgebra-lapack"
name = "nalgebra-lapack"
version = "0.24.0"
authors = [ "Sébastien Crozet <[email protected]>", "Andrew Straw <[email protected]>" ]
authors = ["Sébastien Crozet <[email protected]>", "Andrew Straw <[email protected]>"]

description = "Matrix decompositions using nalgebra matrices and Lapack bindings."
description = "Matrix decompositions using nalgebra matrices and Lapack bindings."
documentation = "https://www.nalgebra.org/docs"
homepage = "https://nalgebra.org"
repository = "https://github.com/dimforge/nalgebra"
readme = "../README.md"
categories = [ "science", "mathematics" ]
keywords = [ "linear", "algebra", "matrix", "vector", "lapack" ]
categories = ["science", "mathematics"]
keywords = ["linear", "algebra", "matrix", "vector", "lapack"]
license = "MIT"
edition = "2018"

[badges]
maintenance = { status = "actively-developed" }

[features]
serde-serialize = [ "serde", "nalgebra/serde-serialize" ]
proptest-support = [ "nalgebra/proptest-support" ]
arbitrary = [ "nalgebra/arbitrary" ]
serde-serialize = ["serde", "nalgebra/serde-serialize"]
proptest-support = ["nalgebra/proptest-support"]
arbitrary = ["nalgebra/arbitrary"]

# For BLAS/LAPACK
default = ["netlib"]
openblas = ["lapack-src/openblas"]
netlib = ["lapack-src/netlib"]
default = ["netlib"]
openblas = ["lapack-src/openblas"]
netlib = ["lapack-src/netlib"]
accelerate = ["lapack-src/accelerate"]
intel-mkl = ["lapack-src/intel-mkl"]
intel-mkl = ["lapack-src/intel-mkl"]

[dependencies]
nalgebra = { version = "0.32", path = ".." }
num-traits = "0.2"
num-complex = { version = "0.4", default-features = false }
simba = "0.8"
serde = { version = "1.0", features = [ "derive" ], optional = true }
lapack = { version = "0.19", default-features = false }
lapack-src = { version = "0.8", default-features = false }
nalgebra = { version = "0.32", path = ".." }
num-traits = "0.2"
num-complex = { version = "0.4", default-features = false }
simba = "0.8"
serde = { version = "1.0", features = ["derive"], optional = true }
lapack = { version = "0.19", default-features = false }
lapack-src = { version = "0.8", default-features = false }
# clippy = "*"

[dev-dependencies]
nalgebra = { version = "0.32", features = [ "arbitrary", "rand" ], path = ".." }
proptest = { version = "1", default-features = false, features = ["std"] }
nalgebra = { version = "0.32", features = ["arbitrary", "rand"], path = ".." }
proptest = { version = "1", default-features = false, features = ["std"] }
quickcheck = "1"
approx = "0.5"
rand = "0.8"
approx = "0.5"
rand = "0.8"

14 changes: 7 additions & 7 deletions nalgebra-lapack/src/cholesky.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,32 +15,32 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(serialize = "DefaultAllocator: Allocator<T, D>,
serde(bound(serialize = "DefaultAllocator: Allocator<D>,
OMatrix<T, D, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(deserialize = "DefaultAllocator: Allocator<T, D>,
serde(bound(deserialize = "DefaultAllocator: Allocator<D>,
OMatrix<T, D, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Cholesky<T: Scalar, D: Dim>
where
DefaultAllocator: Allocator<T, D, D>,
DefaultAllocator: Allocator<D, D>,
{
l: OMatrix<T, D, D>,
}

impl<T: Scalar + Copy, D: Dim> Copy for Cholesky<T, D>
where
DefaultAllocator: Allocator<T, D, D>,
DefaultAllocator: Allocator<D, D>,
OMatrix<T, D, D>: Copy,
{
}

impl<T: CholeskyScalar + Zero, D: Dim> Cholesky<T, D>
where
DefaultAllocator: Allocator<T, D, D>,
DefaultAllocator: Allocator<D, D>,
{
/// Computes the cholesky decomposition of the given symmetric-definite-positive square
/// matrix.
Expand Down Expand Up @@ -105,7 +105,7 @@ where
) -> Option<OMatrix<T, R2, C2>>
where
S2: Storage<T, R2, C2>,
DefaultAllocator: Allocator<T, R2, C2>,
DefaultAllocator: Allocator<R2, C2>,
{
let mut res = b.clone_owned();
if self.solve_mut(&mut res) {
Expand All @@ -119,7 +119,7 @@ where
/// the unknown to be determined.
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut OMatrix<T, R2, C2>) -> bool
where
DefaultAllocator: Allocator<T, R2, C2>,
DefaultAllocator: Allocator<R2, C2>,
{
let dim = self.l.nrows();

Expand Down
22 changes: 9 additions & 13 deletions nalgebra-lapack/src/eigen.rs
Original file line number Diff line number Diff line change
Expand Up @@ -16,24 +16,20 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(serialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
serde(bound(serialize = "DefaultAllocator: Allocator<D, D> + Allocator<D>,
OVector<T, D>: Serialize,
OMatrix<T, D, D>: Serialize")
)
OMatrix<T, D, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(deserialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
serde(bound(deserialize = "DefaultAllocator: Allocator<D, D> + Allocator<D>,
OVector<T, D>: Serialize,
OMatrix<T, D, D>: Deserialize<'de>")
)
OMatrix<T, D, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Eigen<T: Scalar, D: Dim>
where
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
DefaultAllocator: Allocator<D> + Allocator<D, D>,
{
/// The real parts of eigenvalues of the decomposed matrix.
pub eigenvalues_re: OVector<T, D>,
Expand All @@ -47,15 +43,15 @@ where

impl<T: Scalar + Copy, D: Dim> Copy for Eigen<T, D>
where
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
DefaultAllocator: Allocator<D> + Allocator<D, D>,
OVector<T, D>: Copy,
OMatrix<T, D, D>: Copy,
{
}

impl<T: EigenScalar + RealField, D: Dim> Eigen<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
DefaultAllocator: Allocator<D, D> + Allocator<D>,
{
/// Computes the eigenvalues and eigenvectors of the square matrix `m`.
///
Expand Down Expand Up @@ -177,7 +173,7 @@ where
Option<Vec<OVector<T, D>>>,
)
where
DefaultAllocator: Allocator<T, D>,
DefaultAllocator: Allocator<D>,
{
let (number_of_elements, _) = self.eigenvalues_re.shape_generic();
let number_of_elements_value = number_of_elements.value();
Expand Down Expand Up @@ -234,7 +230,7 @@ where
Option<Vec<OVector<Complex<T>, D>>>,
)
where
DefaultAllocator: Allocator<Complex<T>, D>,
DefaultAllocator: Allocator<D>,
{
match self.eigenvalues_are_real() {
true => (None, None, None),
Expand Down
23 changes: 9 additions & 14 deletions nalgebra-lapack/src/generalized_eigenvalues.rs
Original file line number Diff line number Diff line change
Expand Up @@ -30,24 +30,20 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(serialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
serde(bound(serialize = "DefaultAllocator: Allocator<D, D> + Allocator<D>,
OVector<T, D>: Serialize,
OMatrix<T, D, D>: Serialize")
)
OMatrix<T, D, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(deserialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
serde(bound(deserialize = "DefaultAllocator: Allocator<D, D> + Allocator<D>,
OVector<T, D>: Deserialize<'de>,
OMatrix<T, D, D>: Deserialize<'de>")
)
OMatrix<T, D, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct GeneralizedEigen<T: Scalar, D: Dim>
where
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
DefaultAllocator: Allocator<D> + Allocator<D, D>,
{
alphar: OVector<T, D>,
alphai: OVector<T, D>,
Expand All @@ -58,15 +54,15 @@ where

impl<T: Scalar + Copy, D: Dim> Copy for GeneralizedEigen<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
DefaultAllocator: Allocator<D, D> + Allocator<D>,
OMatrix<T, D, D>: Copy,
OVector<T, D>: Copy,
{
}

impl<T: GeneralizedEigenScalar + RealField + Copy, D: Dim> GeneralizedEigen<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
DefaultAllocator: Allocator<D, D> + Allocator<D>,
{
/// Attempts to compute the generalized eigenvalues, and left and right associated eigenvectors
/// via the raw returns from LAPACK's dggev and sggev routines
Expand Down Expand Up @@ -162,8 +158,7 @@ where
/// as columns.
pub fn eigenvectors(&self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
where
DefaultAllocator:
Allocator<Complex<T>, D, D> + Allocator<Complex<T>, D> + Allocator<(Complex<T>, T), D>,
DefaultAllocator: Allocator<D, D> + Allocator<D>,
{
/*
How the eigenvectors are built up:
Expand Down Expand Up @@ -230,7 +225,7 @@ where
#[must_use]
pub fn raw_eigenvalues(&self) -> OVector<(Complex<T>, T), D>
where
DefaultAllocator: Allocator<(Complex<T>, T), D>,
DefaultAllocator: Allocator<D>,
{
let mut out = Matrix::from_element_generic(
self.vsl.shape_generic().0,
Expand Down
16 changes: 8 additions & 8 deletions nalgebra-lapack/src/hessenberg.rs
Original file line number Diff line number Diff line change
Expand Up @@ -12,38 +12,38 @@ use lapack;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(serialize = "DefaultAllocator: Allocator<T, D, D> +
Allocator<T, DimDiff<D, U1>>,
serde(bound(serialize = "DefaultAllocator: Allocator<D, D> +
Allocator<DimDiff<D, U1>>,
OMatrix<T, D, D>: Serialize,
OVector<T, DimDiff<D, U1>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(deserialize = "DefaultAllocator: Allocator<T, D, D> +
Allocator<T, DimDiff<D, U1>>,
serde(bound(deserialize = "DefaultAllocator: Allocator<D, D> +
Allocator<DimDiff<D, U1>>,
OMatrix<T, D, D>: Deserialize<'de>,
OVector<T, DimDiff<D, U1>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Hessenberg<T: Scalar, D: DimSub<U1>>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
DefaultAllocator: Allocator<D, D> + Allocator<DimDiff<D, U1>>,
{
h: OMatrix<T, D, D>,
tau: OVector<T, DimDiff<D, U1>>,
}

impl<T: Scalar + Copy, D: DimSub<U1>> Copy for Hessenberg<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
DefaultAllocator: Allocator<D, D> + Allocator<DimDiff<D, U1>>,
OMatrix<T, D, D>: Copy,
OVector<T, DimDiff<D, U1>>: Copy,
{
}

impl<T: HessenbergScalar + Zero, D: DimSub<U1>> Hessenberg<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
DefaultAllocator: Allocator<D, D> + Allocator<DimDiff<D, U1>>,
{
/// Computes the hessenberg decomposition of the matrix `m`.
pub fn new(mut m: OMatrix<T, D, D>) -> Self {
Expand Down Expand Up @@ -97,7 +97,7 @@ where

impl<T: HessenbergReal + Zero, D: DimSub<U1>> Hessenberg<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
DefaultAllocator: Allocator<D, D> + Allocator<DimDiff<D, U1>>,
{
/// Computes the matrices `(Q, H)` of this decomposition.
#[inline]
Expand Down
Loading
Loading