This repository is for the runner up solution for the challenge Urban3D@ICCV2021.
- We achieve the 3rd place in Urban3D@ECCV2022!The 1st solution also uses this codebase!
Ubuntu 16.04
Anaconda
withpython=3.7
tensorFlow=1.14
cuda=10.1
cudnn=7.6.5
- others:
pip install termcolor opencv-python toposort h5py easydict
sh init.sh
(1) Download the files named "data_release.zip" here. Uncompress it.
(2) Preparing the dataset
python datasets/prepare_data.py --dataset_path $YOURPATH
cd $YOURPATH;
cd ../; mkdir original_block_ply; mv data_release/train/* original_block_ply; mv data_release/test/* original_block_ply;
mv data_release/grid* ./
(3) The data should organized in the following format:
/Dataset/SensatUrban/
└── original_block_ply/
├── birmingham_block_0.ply
├── birmingham_block_1.ply
...
└── cambridge_block_34.ply
└── grid_0.200/
├── birmingham_block_0_KDTree.pkl
├── birmingham_block_0.ply
├── birmingham_block_0_proj.pkl
...
└── cambridge_block_34.ply
We train our model with two V100 GPUs. If you want to use other type of GPU with smaller batch size or other model architecture, you can modify the configuration in cfgs/sensaturban/baseline_version1.yaml
.
python function/train_evaluate_sensaturban.py --cfg cfgs/sensaturban/baseline_version1.yaml --gpus 0 1
- The results will be saved in
./log/
. - You can use
--trainval
to train on both trianing and validation sets.
python function/evaluate_sensaturban.py --load_path [YOUR_MODEL_PATH] --cfg cfgs/sensaturban/baseline_version1.yaml
- The results will be saved in
./log_eval/
.
python function/test_sensaturban.py --load_path [YOUR_MODEL_PATH] --cfg cfgs/sensaturban/baseline_version1.yaml
- The results will be saved in
./log_test/
. - Submit the results to the evaluation server.
We currently release a checkpoints with about 66% mIoU, and more powerful checkpoints will be released in the future.
Input | mIoU | Accuracy | Checkpoints |
---|---|---|---|
xyz+rgb | 65.8 | 94.0 | BaiduNetdisk:1wt2 |
You can specific the checkpoint in evaluation or testing by using
--load_path [CHECKPOINTS_PATH]/model.ckpt-600
If you find our work useful in your research, please consider citing:
@inproceedings{yan2021urban3d,
title={Urban3D-2021-2rd},
author={Xu Yan},
booktitle={https://github.com/yanx27/Urban3D-2021-2nd},
year={2021}
}
This project is not possible without multiple great opensourced codebases.