Skip to content

Commit c38ddbe

Browse files
committed
initial update
1 parent 76c394a commit c38ddbe

File tree

400 files changed

+99542
-6
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

400 files changed

+99542
-6
lines changed

README.md

+87-6
Original file line numberDiff line numberDiff line change
@@ -5,11 +5,9 @@ This repository is for **JS3C-Net** introduced in the following **AAAI-2021** pa
55

66
Xu Yan, Jiantao Gao, Jie Li, Ruimao Zhang, [Zhen Li*](https://mypage.cuhk.edu.cn/academics/lizhen/), Rui Huang and Shuguang Cui, "Sparse Single Sweep LiDAR Point Cloud Segmentation via Learning Contextual Shape Priors from Scene Completion".
77

8-
* Semantic Segmentation:
9-
![](figure/segmentation.png)
10-
* Semantic Scene Completion:
8+
* Semantic Segmentation and Semantic Scene Completion:
9+
![](figure/results.gif)
1110

12-
![](figure/completion.png)
1311
If you find our work useful in your research, please consider citing:
1412
```
1513
@InProceedings{yan2021sparse,
@@ -20,9 +18,92 @@ If you find our work useful in your research, please consider citing:
2018
}
2119
```
2220

21+
## Getting Started
22+
23+
### Set up
24+
Clone the repository:
25+
```
26+
git clone https://github.com/yanx27/JS3C-Net.git
27+
```
28+
29+
Installation instructions for Ubuntu 16.04:
30+
31+
* Make sure <a href="https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html">CUDA</a> and <a href="https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html">cuDNN</a> are installed. Only this configurations has been tested:
32+
- Python 3.6.9, Pytorch 1.3.1, CUDA 10.1;
33+
* Compile the customized operators by `sh complile.sh` in `/lib`.
34+
* Install [spconv](https://github.com/traveller59/spconv) in `/lib/spconv`. We use the same version with [PointGroup](https://github.com/Jia-Research-Lab/PointGroup), you can install according to the instruction in it.
35+
36+
### Data Preparation
37+
* SemanticKITTI and SemanticPOSS datasets can be found in [semantickitti-page](http://semantic-kitti.org/dataset.html#download) and [semanticposs-page](http://www.poss.pku.edu.cn/semanticposs.html).
38+
* Download the files related to **semantic segmentation** and extract everything into the same folder.
39+
* Use [voxelizer](https://github.com/jbehley/voxelizer) generate ground truths of **semantic scene completion**, where following parameters are used. We provide pre-processed SemanticPOSS SSC labels [here](https://drive.google.com/file/d/1O2Tg-r5egVPLNboRwd321sobJvgmFUvI/view?usp=sharing).
40+
```angular2
41+
min range: 2.5
42+
max range: 70
43+
future scans: 70
44+
min extent: [0, -25.6, -2]
45+
max extent: [51.2, 25.6, 4.4]
46+
voxel size: 0.2
47+
```
48+
49+
* Finally, the dataset folder should be organized as follows.
50+
```angular2
51+
SemanticKITTI(POSS)
52+
├── dataset
53+
│ ├── sequences
54+
│ │ ├── 00
55+
│ │ │ ├── labels
56+
│ │ │ ├── velodyne
57+
│ │ │ ├── voxels
58+
│ │ │ ├── [OTHER FILES OR FOLDERS]
59+
│ │ ├── 01
60+
│ │ ├── ... ...
61+
62+
```
63+
* Note that the data for official SemanticKITTI SSC benchmark only contains 1/5 of the whole sequence.
64+
65+
### SemanticKITTI
66+
#### Training
67+
Run the following command to start the training. Output (logs) will be redirected to `./logs/JS3C-Net-kitti/`. You can ignore this step if you want to use our pretrained model in `./logs/JS3C-Net-kitti/`.
68+
```angular2
69+
$ python train.py --gpu 0 --log_dir JS3C-Net-kitti --config opt/JS3C_default_kitti.yaml
70+
```
71+
#### Evaluation Semantic Segmentation
72+
Run the following command to evaluate model on evaluation or test dataset
73+
```
74+
$ python test_kitti_segment.py --log_dir JS3C-Net-kitti --gpu 0 --dataset [val/test]
75+
```
76+
77+
#### Evaluation Semantic Scene Completion
78+
Run the following command to evaluate model on evaluation or test dataset
79+
```
80+
$ python test_kitti_ssc.py --log_dir JS3C-Net-kitti --gpu 0 --dataset [val/test]
81+
```
82+
83+
### SemanticPOSS
84+
Results on SemanticPOSS can be easily obtained by
85+
```angular2
86+
$ python train.py --gpu 0 --log_dir JS3C-Net-POSS --config opt/JS3C_default_POSS.yaml
87+
$ python test_poss_segment.py --gpu 0 --log_dir JS3C-Net-POSS
88+
```
89+
90+
## Pretrained Model and Benchmark Results
91+
Quantitative results on ScanNet test set at the submisison time.
92+
93+
| Model | #Param | Segmentation | Completion | Checkpoint |
94+
|--|--|--|--|--|
95+
|JS3C-Net| 268W | 66.0 | 56.6 | [18.5MB](log/JS3C-Net-kitti) |
2396

2497
## Results on SemanticKITTI Benchmark
25-
Quantitative results on SemanticKITTI benchmark at the submisison time.
98+
Quantitative results on **SemanticKITTI Benchmark** at the submisison time.
2699
![](figure/benchmark.png)
27100

28-
## Comming Soon...
101+
## Acknowledgement
102+
This project is not possible without multiple great opensourced codebases.
103+
* [SparseConv](https://github.com/facebookresearch/SparseConvNet)
104+
* [spconv](https://github.com/traveller59/spconv)
105+
* [PointGroup](https://github.com/Jia-Research-Lab/PointGroup)
106+
* [nanoflann](https://github.com/jlblancoc/nanoflann)
107+
* [semantic-kitti-api](https://github.com/PRBonn/semantic-kitti-api)
108+
## License
109+
This repository is released under MIT License (see LICENSE file for details).

figure/completion.png

-899 KB
Binary file not shown.

figure/results.gif

45.9 MB
Loading

figure/segmentation.png

-1.27 MB
Binary file not shown.

kitti_dataset.py

+255
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,255 @@
1+
# *_*coding:utf-8 *_*
2+
"""
3+
Author: Xu Yan
4+
File: kitti_dataset.py
5+
@time: 2020/8/12 22:03
6+
"""
7+
import os
8+
import numpy as np
9+
from utils import laserscan
10+
import yaml
11+
from torch.utils.data import Dataset
12+
import torch
13+
import spconv
14+
import math
15+
16+
config_file = os.path.join('opt/semantic-kitti.yaml')
17+
kitti_config = yaml.safe_load(open(config_file, 'r'))
18+
remapdict = kitti_config["learning_map"]
19+
20+
21+
SPLIT_SEQUENCES = {
22+
"train": ["00", "01", "02", "03", "04", "05", "06", "07", "09", "10"],
23+
"valid": ["08"],
24+
"test": ["11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21"]
25+
}
26+
27+
SPLIT_FILES = {
28+
"train": [".bin", ".label", ".invalid", ".occluded"],
29+
"valid": [".bin", ".label", ".invalid", ".occluded"],
30+
"test": [".bin"]
31+
}
32+
33+
EXT_TO_NAME = {".bin": "input", ".label": "label", ".invalid": "invalid", ".occluded": "occluded"}
34+
scan = laserscan.SemLaserScan(nclasses=20, sem_color_dict=kitti_config['color_map'])
35+
36+
37+
def unpack(compressed):
38+
''' given a bit encoded voxel grid, make a normal voxel grid out of it. '''
39+
uncompressed = np.zeros(compressed.shape[0] * 8, dtype=np.uint8)
40+
uncompressed[::8] = compressed[:] >> 7 & 1
41+
uncompressed[1::8] = compressed[:] >> 6 & 1
42+
uncompressed[2::8] = compressed[:] >> 5 & 1
43+
uncompressed[3::8] = compressed[:] >> 4 & 1
44+
uncompressed[4::8] = compressed[:] >> 3 & 1
45+
uncompressed[5::8] = compressed[:] >> 2 & 1
46+
uncompressed[6::8] = compressed[:] >> 1 & 1
47+
uncompressed[7::8] = compressed[:] & 1
48+
49+
return uncompressed
50+
51+
class get_dataset(Dataset):
52+
def __init__(self, config, split="train", augment=False):
53+
""" Load data from given dataset directory. """
54+
55+
self.config = config
56+
self.augment = augment
57+
self.files = {}
58+
self.filenames = []
59+
self.seg_path = config['GENERAL']['dataset_dir']
60+
for ext in SPLIT_FILES[split]:
61+
self.files[EXT_TO_NAME[ext]] = []
62+
self.label_to_names = {0: 'car', 1: 'bicycle', 2: 'motorcycle', 3: 'truck',
63+
4: 'other-vehicle', 5: 'person', 6: 'bicyclist', 7: 'motorcyclist',
64+
8: 'road', 9: 'parking', 10: 'sidewalk', 11: 'other-ground', 12: 'building',
65+
13: 'fence', 14: 'vegetation', 15: 'trunk', 16: 'terrain', 17: 'pole',
66+
18: 'traffic-sign'}
67+
68+
for sequence in SPLIT_SEQUENCES[split]:
69+
complete_path = os.path.join(config['GENERAL']['dataset_dir'], "sequences", sequence, "voxels")
70+
if not os.path.exists(complete_path): raise RuntimeError("Voxel directory missing: " + complete_path)
71+
72+
files = os.listdir(complete_path)
73+
for ext in SPLIT_FILES[split]:
74+
comletion_data = sorted([os.path.join(complete_path, f) for f in files if f.endswith(ext)])
75+
if len(comletion_data) == 0: raise RuntimeError("Missing data for " + EXT_TO_NAME[ext])
76+
self.files[EXT_TO_NAME[ext]].extend(comletion_data)
77+
78+
self.filenames.extend(
79+
sorted([(sequence, os.path.splitext(f)[0]) for f in files if f.endswith(SPLIT_FILES[split][0])]))
80+
81+
self.num_files = len(self.filenames)
82+
remapdict = kitti_config["learning_map"]
83+
# make lookup table for mapping
84+
maxkey = max(remapdict.keys())
85+
86+
# +100 hack making lut bigger just in case there are unknown labels
87+
remap_lut = np.zeros((maxkey + 100), dtype=np.int32)
88+
remap_lut[list(remapdict.keys())] = list(remapdict.values())
89+
seg_remap_lut = remap_lut - 1
90+
seg_remap_lut[seg_remap_lut == -1] = -100
91+
92+
# in completion we have to distinguish empty and invalid voxels.
93+
# Important: For voxels 0 corresponds to "empty" and not "unlabeled".
94+
remap_lut[remap_lut == 0] = 255 # map 0 to 'invalid'
95+
remap_lut[0] = 0 # only 'empty' stays 'empty'.
96+
self.comletion_remap_lut = remap_lut
97+
self.seg_remap_lut = seg_remap_lut
98+
99+
# sanity check:
100+
for k, v in self.files.items():
101+
# print(k, len(v))
102+
assert (len(v) == self.num_files)
103+
104+
if split == 'train':
105+
seg_num_per_class = np.array(config['TRAIN']['seg_num_per_class'])
106+
complt_num_per_class = np.array(config['TRAIN']['complt_num_per_class'])
107+
108+
seg_labelweights = seg_num_per_class / np.sum(seg_num_per_class)
109+
self.seg_labelweights = np.power(np.amax(seg_labelweights) / seg_labelweights, 1 / 3.0)
110+
compl_labelweights = complt_num_per_class / np.sum(complt_num_per_class)
111+
self.compl_labelweights = np.power(np.amax(compl_labelweights) / compl_labelweights, 1 / 3.0)
112+
else:
113+
self.compl_labelweights = torch.Tensor(np.ones(20) * 3)
114+
self.seg_labelweights = torch.Tensor(np.ones(19))
115+
self.compl_labelweights[0] = 1
116+
117+
self.voxel_generator = spconv.utils.VoxelGenerator(
118+
voxel_size=[config['Completion']['voxel_size']]*3,
119+
point_cloud_range=config['Completion']['point_cloud_range'],
120+
max_num_points=20,
121+
max_voxels=256 * 256 * 32
122+
)
123+
124+
def __len__(self):
125+
return self.num_files
126+
127+
def __getitem__(self, t):
128+
""" fill dictionary with available data for given index. """
129+
'''Load Completion Data'''
130+
completion_collection = {}
131+
if self.augment:
132+
# stat = np.random.randint(0,6)
133+
stat = np.random.randint(0,4)
134+
else:
135+
stat = 0 # set 0 with no augment
136+
completion_collection['stat'] = stat
137+
138+
# read raw data and unpack (if necessary)
139+
for typ in self.files.keys():
140+
if typ == "label":
141+
scan_data = np.fromfile(self.files[typ][t], dtype=np.uint16)
142+
scan_data = self.comletion_remap_lut[scan_data]
143+
else:
144+
scan_data = unpack(np.fromfile(self.files[typ][t], dtype=np.uint8))
145+
scan_data = scan_data.reshape(self.config['Completion']['full_scale'])
146+
scan_data = data_augmentation(torch.Tensor(scan_data).unsqueeze(0), stat)
147+
# turn in actual voxel grid representation.
148+
completion_collection[typ] = scan_data
149+
150+
'''Load Segmentation Data'''
151+
seg_point_name = self.seg_path + self.files['input'][t][self.files['input'][t].find('sequences'):].replace('voxels','velodyne')
152+
seg_label_name = self.seg_path + self.files['label'][t][self.files['label'][t].find('sequences'):].replace('voxels','labels')
153+
154+
scan.open_scan(seg_point_name)
155+
scan.open_label(seg_label_name)
156+
remissions = scan.remissions
157+
xyz = scan.points
158+
label = scan.sem_label
159+
label = self.seg_remap_lut[label]
160+
161+
if self.config['Segmentation']['use_coords']:
162+
feature = np.concatenate([xyz, remissions.reshape(-1, 1)], 1)
163+
else:
164+
feature = remissions.reshape(-1, 1)
165+
166+
'''Process Segmentation Data'''
167+
segmentation_collection = {}
168+
coords, label, feature, idxs = self.process_seg_data(xyz, label, feature)
169+
segmentation_collection.update({
170+
'coords': coords,
171+
'label': label,
172+
'feature': feature,
173+
})
174+
175+
'''Generate Alignment Data'''
176+
aliment_collection = {}
177+
xyz = xyz[idxs]
178+
voxels, coords, num_points_per_voxel = self.voxel_generator.generate(np.concatenate([xyz, np.arange(len(xyz)).reshape(-1,1)],-1))
179+
voxel_centers = (coords[:, ::-1] + 0.5) * self.voxel_generator.voxel_size + self.voxel_generator.point_cloud_range[0:3]
180+
aliment_collection.update({
181+
'voxels': voxels,
182+
'coords': coords,
183+
'voxel_centers': voxel_centers,
184+
'num_points_per_voxel': num_points_per_voxel,
185+
})
186+
187+
return self.filenames[t], completion_collection, aliment_collection, segmentation_collection
188+
189+
def process_seg_data(self, xyz, label, feature):
190+
coords = np.ascontiguousarray(xyz - xyz.mean(0))
191+
m = np.eye(3) + np.random.randn(3, 3) * 0.1
192+
m[0][0] *= np.random.randint(0, 2) * 2 - 1
193+
m *= self.config['Segmentation']['scale']
194+
theta = np.random.rand() * 2 * math.pi
195+
m = np.matmul(m, [[math.cos(theta), math.sin(theta), 0], [-math.sin(theta), math.cos(theta), 0], [0, 0, 1]])
196+
coords = np.matmul(coords, m)
197+
198+
m = coords.min(0)
199+
M = coords.max(0)
200+
offset = - m + np.clip(self.config['Segmentation']['full_scale'][1] - M + m - 0.001, 0, None) * np.random.rand(3) + np.clip(
201+
self.config['Segmentation']['full_scale'][1] - M + m + 0.001, None, 0) * np.random.rand(3)
202+
coords += offset
203+
idxs = (coords.min(1) >= 0) * (coords.max(1) < self.config['Segmentation']['full_scale'][1])
204+
coords = coords[idxs]
205+
feature = feature[idxs]
206+
label = label[idxs]
207+
208+
coords = torch.Tensor(coords).long()
209+
feature = torch.Tensor(feature)
210+
label = torch.Tensor(label)
211+
212+
return coords, label, feature, idxs
213+
214+
215+
def data_augmentation(t, state, inverse=False):
216+
assert t.dim() == 4, 'input dimension should be 4!'
217+
if state == 1:
218+
aug_t = t.flip([1])
219+
elif state == 2:
220+
aug_t = t.flip([2])
221+
# elif state == 3:
222+
# k = 1 if not inverse else 3
223+
# aug_t = t.rot90(k, [1, 2])
224+
# elif state == 4:
225+
# aug_t = t.rot90(2, [1, 2])
226+
# elif state == 5:
227+
# k = 3 if not inverse else 1
228+
# aug_t = t.rot90(k, [1, 2])
229+
else:
230+
aug_t = t
231+
232+
return aug_t
233+
234+
def sparse_tensor_augmentation(st, states):
235+
spatial_shape = st.spatial_shape
236+
batch_size = st.batch_size
237+
t = st.dense()
238+
channels = t.shape[1]
239+
for b in range(batch_size):
240+
t[b] = data_augmentation(t[b], states[b])
241+
coords = torch.sum(torch.abs(t), dim=1).nonzero().type(torch.int32)
242+
features = t.permute(0, 2, 3, 4, 1).reshape(-1, channels)
243+
features = features[torch.sum(torch.abs(features), dim=1).nonzero(), :]
244+
features = features.squeeze(1)
245+
nst = spconv.SparseConvTensor(features.float(), coords.int(), spatial_shape, batch_size)
246+
247+
return nst
248+
249+
def tensor_augmentation(st, states):
250+
batch_size = st.shape[0]
251+
for b in range(batch_size):
252+
st[b] = data_augmentation(st[b], states[b])
253+
254+
return st
255+

lib/compile.sh

+7
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
python setup.py develop
2+
cd nearest_neighbors
3+
python setup.py install
4+
cd ..
5+
cd pointgroup_ops
6+
python setup.py develop
7+
cd ..

0 commit comments

Comments
 (0)