AI-Powered Hackathon Idea Generator & Validator
Inspired by AI-Scientist's iterative idea refinement approach, Idea Forge is a two-stage agentic system that helps you discover and validate winning hackathon ideas through targeted web research and critique-based refinement.
Every hackathon, you face the same dilemma:
- Some events have descriptive problem statements
- Others require you to get creative and come up with your own ideas
- You end up iterating alone, gambling on what might be a "banger" winning project
Idea Forge solves this by automating the research and validation loop that experienced hackathon winners do naturally.
1. Independent Mode π
- Searches Reddit, HackerNews, and tech communities for real problems people face
- Identifies pain points and frustrations in your target domain
- Generates viable hackathon ideas based on actual user needs
- Perfect when you have a track but no specific problem statement
2. Depth Mode π A two-stage iterative process inspired by AI-Scientist:
| Stage | Agent | Role |
|---|---|---|
| 1 | Researcher | Searches for winning hackathon ideas on Devpost, social media, blogs |
| 2 | Critique | Evaluates ideas with strict scoring (1-10) across 6 dimensions |
The loop continues until:
- β An idea meets your quality threshold (configurable 10-90%)
- βΉοΈ You manually stop the process
- π Max iterations reached (returns best idea found)
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Next.js Frontend β
β βββββββββββββββ βββββββββββββββ βββββββββββββββββββββββ β
β β Independent β β Depth β β Threshold Slider β β
β β Mode β β Mode β β (1-9 β 10-90%) β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Python Backend (Agno) β
β βββββββββββββββββββββββ βββββββββββββββββββββββββββββββ β
β β Researcher Agent βββββΆβ Critique Agent β β
β β (Serper Web Search)β β (Scoring & Validation) β β
β βββββββββββββββββββββββ βββββββββββββββββββββββββββββββ β
β β β β
β βββββββββββββββββββββββββββββ β
β Iterative Loop β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β‘ Want to get started in 5 minutes? See QUICK_START.md
- Node.js 18+
- Python 3.10+
- UV (Python package manager - 10-100x faster than pip!)
- Serper API Key (free tier available)
- One of the following LLM providers:
- OpenAI API Key (GPT-4, GPT-4o)
- Google Gemini API Key (Gemini 2.0 Flash, etc.)
- Groq API Key (Llama 3.3, Mixtral, etc.)
π‘ New to UV? See UV_GUIDE.md for a complete guide
./setup.shInstall UV first (if not already installed):
curl -LsSf https://astral.sh/uv/install.sh | shThen setup the project:
# Frontend
npm install
# Backend
cd backend
uv venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
uv pip install -r requirements.txt
# Environment
cp .env.example .env
# Edit .env with your API keysBefore running, test your model configuration:
cd backend
source .venv/bin/activate # Windows: .venv\Scripts\activate
python test_config.pyYou should see:
β
Configuration test passed!
β
Successfully initialized: gemini-2.0-flash-exp
# Terminal 1: Backend
cd backend
source .venv/bin/activate
python main.py
# Server runs on http://localhost:8000
# Terminal 2: Frontend
npm run dev
# App runs on http://localhost:3000Using UV Run (Alternative):
# Backend (no activation needed!)
cd backend
uv run main.py
# Or run CLI directly
uv run cli.py independent --track "AI/ML"With UV (Recommended):
# Independent Mode
cd backend
uv run cli.py independent --track "AI/ML" --requirements "use computer vision"
# Depth Mode
uv run cli.py depth \
--track "FinTech" \
--problem "Help college students manage their finances" \
--threshold 7 \
--max-iter 10Traditional way:
cd backend
source .venv/bin/activate
python cli.py independent --track "AI/ML"Create backend/.env with your configuration:
# Required: Web Search API
SERPER_API_KEY=your_serper_key
# Model Selection (set ONE to true)
USE_OPENAI=true
USE_GEMINI=false
USE_GROQ=false
# OpenAI Configuration (if USE_OPENAI=true)
OPENAI_API_KEY=your_openai_key
OPENAI_MODEL=gpt-4o
# Gemini Configuration (if USE_GEMINI=true)
GEMINI_API_KEY=your_gemini_key
GEMINI_MODEL=gemini-2.0-flash-exp
# Groq Configuration (if USE_GROQ=true)
GROQ_API_KEY=your_groq_key
GROQ_MODEL=llama-3.3-70b-versatile| Provider | Models | Speed | Cost |
|---|---|---|---|
| OpenAI | gpt-4o, gpt-4o-mini, gpt-4-turbo | Medium | $$$ |
| Gemini | gemini-2.0-flash-exp, gemini-1.5-pro, gemini-1.5-flash | Fast | $ |
| Groq | llama-3.3-70b-versatile, mixtral-8x7b, llama-3.1-70b | Very Fast | Free tier |
Recommendation: Start with Groq (free + fast) or Gemini (cheap + fast) for testing, use OpenAI GPT-4o for best quality.
π See MODEL_SETUP.md for detailed configuration guide and API key setup.
The threshold slider (1-9) maps to quality requirements:
- 1 = 10% (very lenient, accepts almost anything)
- 5 = 50% (balanced)
- 7 = 70% (recommended for competitive hackathons)
- 9 = 90% (very strict, only exceptional ideas pass)
The Critique Agent evaluates ideas on 6 dimensions:
| Dimension | What it measures |
|---|---|
| Innovation | How novel and creative is this idea? |
| Feasibility | Can this be built in 24-48 hours? |
| Impact | Does this solve a meaningful problem? |
| Demo Potential | Will this wow judges in a 3-minute demo? |
| Technical Depth | Is there enough technical challenge? |
| Market Fit | Is there actual demand for this solution? |
| Endpoint | Method | Description |
|---|---|---|
/api/independent |
POST | Generate idea from problem discovery |
/api/depth |
POST | Start depth mode (SSE stream) |
/api/depth/stop |
POST | Stop current iteration |
/api/status |
GET | Get current forge status |
curl -X POST http://localhost:8000/api/independent \
-H "Content-Type: application/json" \
-d '{"track": "Healthcare", "requirements": "use AI for diagnosis"}'idea-forge/
βββ app/ # Next.js app router
βββ components/ # React components
β βββ ui/ # shadcn/ui components
β βββ ForgeInterface.tsx # Main UI
β βββ IdeaCard.tsx # Idea display card
βββ backend/
β βββ agents/
β β βββ researcher.py # Stage 1: Web research
β β βββ critique.py # Stage 2: Evaluation
β β βββ forge.py # Orchestrator
β βββ tools/
β β βββ serper.py # Web search API
β βββ prompts/ # Agent prompts
β βββ main.py # FastAPI server
β βββ cli.py # CLI interface
βββ lib/ # Utilities
- Fork the repo
- Create a feature branch
- Make your changes
- Submit a PR
MIT
- AI-Scientist for the iterative refinement inspiration
- Agno for the agent framework
- Serper for the search API
- shadcn/ui for the UI components