This library provides OpenPGP facilities in Python through the Sequoia PGP library. If you need to work with encryption and digital signatures using an IETF standardized protocol, this package is for you!
Note: This is a work in progress. The API is not stable!
set -euxo pipefail
python -m venv .env
source .env/bin/activate
pip install maturin
maturin develop
PySequoia can be installed through pip
:
pip install pysequoia
Note that since pysequoia
is implemented largely in Rust, a Rust
toolchain is necessary for the installation to succeed.
This entire document is used for end-to-end integration tests that exercise the package's API surface.
The tests assume that these keys exist:
# generate a key with password
gpg --batch --pinentry-mode loopback --passphrase hunter22 --quick-gen-key [email protected]
gpg --batch --pinentry-mode loopback --passphrase hunter22 --export-secret-key [email protected] > passwd.pgp
# generate a key without password
gpg --batch --pinentry-mode loopback --passphrase '' --quick-gen-key [email protected] future-default
gpg --batch --pinentry-mode loopback --passphrase '' --export-secret-key [email protected] > no-passwd.pgp
All examples assume that these basic classes have been imported:
from pysequoia import Cert
Signs data and returns armored output:
from pysequoia import sign
s = Cert.from_file("signing-key.asc")
signed = sign(s.secrets.signer(), "data to be signed".encode("utf8"))
print(f"Signed data: {signed}")
assert "PGP MESSAGE" in str(signed)
Verifies signed data and returns verified data:
from pysequoia import verify
# sign some data
signing_key = Cert.from_file("signing-key.asc")
signed = sign(s.secrets.signer(), "data to be signed".encode("utf8"))
def get_certs(key_ids):
# key_ids is an array of required signing keys
print(f"For verification, we need these keys: {key_ids}")
return [signing_key]
# verify the data
result = verify(signed, get_certs)
assert result.bytes.decode("utf8") == "data to be signed"
# let's check the valid signature's certificate and signing subkey fingerprints
assert result.valid_sigs[0].certificate == "afcf5405e8f49dbcd5dc548a86375b854b86acf9"
assert result.valid_sigs[0].signing_key == "afcf5405e8f49dbcd5dc548a86375b854b86acf9"
The function that returns certificates (here get_certs
) may return more certificates than necessary.
verify
succeeds if at least one correct signature has been made by any of the certificates supplied. If you need more advanced policies they can be implemented by inspecting the valid_sigs
property.
Signs and encrypts a string to one or more recipients:
from pysequoia import encrypt
s = Cert.from_file("passwd.pgp")
r = Cert.from_bytes(open("wiktor.asc", "rb").read())
bytes = "content to encrypt".encode("utf8")
encrypted = encrypt(signer = s.secrets.signer("hunter22"), recipients = [r], bytes = bytes).decode("utf8")
print(f"Encrypted data: {encrypted}")
The signer
argument is optional and when omitted the function will return an unsigned (but encrypted) message.
Decrypts plain data:
from pysequoia import decrypt
sender = Cert.from_file("no-passwd.pgp")
receiver = Cert.from_file("passwd.pgp")
content = "Red Green Blue"
encrypted = encrypt(recipients = [receiver], bytes = content.encode("utf8"))
decrypted = decrypt(decryptor = receiver.secrets.decryptor("hunter22"), bytes = encrypted)
assert content == decrypted.bytes.decode("utf8");
# this message did not contain any valid signatures
assert len(decrypted.valid_sigs) == 0
Decrypt can also verify signatures while decrypting:
from pysequoia import decrypt
sender = Cert.from_file("no-passwd.pgp")
receiver = Cert.from_file("passwd.pgp")
content = "Red Green Blue"
encrypted = encrypt(signer = sender.secrets.signer(), recipients = [receiver], bytes = content.encode("utf8"))
def get_certs(key_ids):
print(f"For verification after decryption, we need these keys: {key_ids}")
return [sender]
decrypted = decrypt(decryptor = receiver.secrets.decryptor("hunter22"), bytes = encrypted, store = get_certs)
assert content == decrypted.bytes.decode("utf8");
# let's check the valid signature's certificate and signing subkey fingerprints
assert decrypted.valid_sigs[0].certificate == sender.fingerprint
assert decrypted.valid_sigs[0].signing_key == sender.fingerprint
Here, the same remarks as to verify
also apply.
The Cert
class represents one OpenPGP certificate (commonly called a
"public key").
This package additionally verifies the certificate using Sequoia PGP's
StandardPolicy
. This means that certificates using weak
cryptography can fail to load, or present a different view than in
other OpenPGP software (e.g. if a User ID uses SHA-1 in its
back-signature, it may be missing from the list of User IDs returned
by this package).
Certificates have two forms, one is ASCII armored and one is raw bytes:
cert = Cert.generate("Test <[email protected]>")
print(f"Armored cert: {cert}")
print(f"Bytes of the cert: {cert.bytes()}")
Certificates can be parsed from files (Cert.from_file
) or bytes in
memory (Cert.from_bytes
).
cert1 = Cert.generate("Test <[email protected]>")
buffer = cert1.bytes()
parsed_cert = Cert.from_bytes(buffer)
assert str(parsed_cert.user_ids[0]) == "Test <[email protected]>"
They can also be picked from "keyring" files (Cert.split_file
) or
bytes in memory (Cert.split_bytes
) which are collections of binary
certificates.
cert1 = Cert.generate("Test 1 <[email protected]>")
cert2 = Cert.generate("Test 2 <[email protected]>")
cert3 = Cert.generate("Test 3 <[email protected]>")
buffer = cert1.bytes() + cert2.bytes() + cert3.bytes()
certs = Cert.split_bytes(buffer)
assert len(certs) == 3
Creates a new general purpose key with a given User ID:
alice = Cert.generate("Alice <[email protected]>")
fpr = alice.fingerprint
print(f"Generated cert with fingerprint {fpr}:\n{alice}")
Multiple User IDs can be passed as a list to the generate
function:
cert = Cert.generate(user_ids = ["First", "Second", "Third"])
assert len(cert.user_ids) == 3
Newly generated certificates are usable in both encryption and signing contexts:
alice = Cert.generate("Alice <[email protected]>")
bob = Cert.generate("Bob <[email protected]>")
bytes = "content to encrypt".encode("utf8")
encrypted = encrypt(signer = alice.secrets.signer(), recipients = [bob], bytes = bytes)
print(f"Encrypted data: {encrypted}")
Merges packets from a new version into an old version of a certificate:
old = Cert.from_file("wiktor.asc")
new = Cert.from_file("wiktor-fresh.asc")
merged = old.merge(new)
Listing existing User IDs:
cert = Cert.from_file("wiktor.asc")
user_id = cert.user_ids[0]
assert str(user_id).startswith("Wiktor Kwapisiewicz")
Adding new User IDs:
cert = Cert.generate("Alice <[email protected]>")
assert len(cert.user_ids) == 1;
cert = cert.add_user_id(value = "Alice <[email protected]>", certifier = cert.secrets.certifier())
assert len(cert.user_ids) == 2;
Revoking User IDs:
cert = Cert.generate("Bob <[email protected]>")
cert = cert.add_user_id(value = "Bob <[email protected]>", certifier = cert.secrets.certifier())
assert len(cert.user_ids) == 2
# create User ID revocation
revocation = cert.revoke_user_id(user_id = cert.user_ids[1], certifier = cert.secrets.certifier())
# merge the revocation with the cert
cert = Cert.from_bytes(cert.bytes() + revocation.bytes())
assert len(cert.user_ids) == 1
Notations are small pieces of data that can be attached to signatures (and, indirectly, to User IDs).
The following example reads and displays a Keyoxide proof URI:
cert = Cert.from_file("wiktor.asc")
user_id = cert.user_ids[0]
notation = user_id.notations[0]
assert notation.key == "[email protected]";
assert notation.value == "dns:metacode.biz?type=TXT";
Notations can also be added:
from pysequoia import Notation
cert = Cert.from_file("signing-key.asc")
# No notations initially
assert len(cert.user_ids[0].notations) == 0;
cert = cert.set_notations(cert.secrets.certifier(), [Notation("[email protected]", "dns:metacode.biz")])
# Has one notation now
print(str(cert.user_ids[0].notations))
assert len(cert.user_ids[0].notations) == 1;
# Check the notation data
notation = cert.user_ids[0].notations[0]
assert notation.key == "[email protected]";
assert notation.value == "dns:metacode.biz";
Certs have an expiration
getter for retrieving the current key
expiry time:
cert = Cert.from_file("signing-key.asc")
# Cert does not have any expiration date:
assert cert.expiration is None
cert = Cert.from_file("wiktor.asc")
# Cert expires on New Year's Eve
assert str(cert.expiration) == "2022-12-31 12:00:02+00:00"
Key expiration can also be adjusted with set_expiration
:
from datetime import datetime
cert = Cert.from_file("signing-key.asc")
# Cert does not have any expiration date:
assert cert.expiration is None
# Set the expiration to some specified point in time
expiration = datetime.fromisoformat("2021-11-04T00:05:23+00:00")
cert = cert.set_expiration(expiration = expiration, certifier = cert.secrets.certifier())
assert str(cert.expiration) == "2021-11-04 00:05:23+00:00"
Certs can be revoked. While expiration makes the key unusable temporarily to encourage the user to refresh a copy revocation is irreversible.
cert = Cert.generate("Test Revocation <[email protected]>")
revocation = cert.revoke(certifier = cert.secrets.certifier())
# creating revocation signature does not revoke the key
assert not cert.is_revoked
# importing revocation signature marks the key as revoked
revoked_cert = Cert.from_bytes(cert.bytes() + revocation.bytes())
assert revoked_cert.is_revoked
Certificates generated through Cert.generate()
contain secret keys
and can be used for signing and decryption.
To avoid accidental leakage secret keys are never directly printed
when the Cert is written to a string. To enable this behavior use
Cert.secrets
. secrets
returns None
on certificates which do
not contain any secret key material ("public keys").
c = Cert.generate("Testing key <[email protected]>")
assert c.has_secret_keys
# by default only public parts are exported
public_parts = Cert.from_bytes(f"{c}".encode("utf8"))
assert not public_parts.has_secret_keys
assert public_parts.secrets is None
# to export secret parts use the following:
private_parts = Cert.from_bytes(f"{c.secrets}".encode("utf8"))
assert private_parts.has_secret_keys
Detached signatures can be read directly from files (Sig.from_file
) or bytes in memory (Sig.from_bytes
):
from pysequoia import Sig
sig = Sig.from_file("sig.pgp")
print(f"Parsed signature: {repr(sig)}")
assert sig.issuer_fpr == "e8f23996f23218640cb44cbe75cf5ac418b8e74c"
assert sig.created == datetime.fromisoformat("2023-07-19T18:14:01+00:00")
This project is licensed under Apache License, Version 2.0.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the package by you shall be under the terms and conditions of this license, without any additional terms or conditions.