Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implementation of SVM, Decision Tree, and Random Forest algorithms #211

Open
wants to merge 15 commits into
base: main
Choose a base branch
from
230 changes: 230 additions & 0 deletions ml/svm.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,230 @@
module ml

import math
import rand

pub struct SVMConfig {
pub mut:
max_iterations int = 1000
learning_rate f64 = 0.01
tolerance f64 = 1e-6
c f64 = 1.0 // Regularization parameter
}

pub struct DataPoint {
pub mut:
x []f64
y int
}

pub struct SVMModel {
pub mut:
support_vectors []DataPoint
alphas []f64
b f64
kernel KernelFunction @[required]
config SVMConfig
}

type KernelFunction = fn ([]f64, []f64) f64

pub fn linear_kernel(x []f64, y []f64) f64 {
return dot_product(x, y)
}

pub fn polynomial_kernel(degree int) KernelFunction {
return fn [degree] (x []f64, y []f64) f64 {
return math.pow(dot_product(x, y) + 1.0, f64(degree))
}
}

pub fn rbf_kernel(gamma f64) KernelFunction {
return fn [gamma] (x []f64, y []f64) f64 {
diff := vector_subtract(x, y)
return math.exp(-gamma * dot_product(diff, diff))
}
}

fn dot_product(a []f64, b []f64) f64 {
mut sum := 0.0
for i in 0 .. a.len {
sum += a[i] * b[i]
}
return sum
}

fn vector_subtract(a []f64, b []f64) []f64 {
mut result := []f64{len: a.len}
for i in 0 .. a.len {
result[i] = a[i] - b[i]
}
return result
}

pub fn train_svm(data []DataPoint, kernel KernelFunction, config SVMConfig) &SVMModel {
mut model := &SVMModel{
support_vectors: []DataPoint{}
alphas: []f64{len: data.len, init: 0.0}
b: 0.0
kernel: kernel
config: config
}

mut passes := 0
for {
mut num_changed_alphas := 0
for i in 0 .. data.len {
ei := predict_raw(model, data[i].x) - f64(data[i].y)
if (data[i].y * ei < -model.config.tolerance && model.alphas[i] < model.config.c)
|| (data[i].y * ei > model.config.tolerance && model.alphas[i] > 0) {
j := rand.int_in_range(0, data.len - 1) or { panic(err) }
ej := predict_raw(model, data[j].x) - f64(data[j].y)

alpha_i_old := model.alphas[i]
alpha_j_old := model.alphas[j]

mut l, mut h := 0.0, 0.0
if data[i].y != data[j].y {
l = math.max(0.0, model.alphas[j] - model.alphas[i])
h = math.min(model.config.c, model.config.c + model.alphas[j] - model.alphas[i])
} else {
l = math.max(0.0, model.alphas[i] + model.alphas[j] - model.config.c)
h = math.min(model.config.c, model.alphas[i] + model.alphas[j])
}

if l == h {
continue
}

eta := 2 * model.kernel(data[i].x, data[j].x) - model.kernel(data[i].x,
data[i].x) - model.kernel(data[j].x, data[j].x)

if eta >= 0 {
continue
}

model.alphas[j] = alpha_j_old - f64(data[j].y) * (ei - ej) / eta
model.alphas[j] = math.max(l, math.min(h, model.alphas[j]))

if math.abs(model.alphas[j] - alpha_j_old) < 1e-5 {
continue
}

model.alphas[i] = alpha_i_old +
f64(data[i].y * data[j].y) * (alpha_j_old - model.alphas[j])

b1 := model.b - ei - f64(data[i].y) * (model.alphas[i] - alpha_i_old) * model.kernel(data[i].x,
data[i].x) - f64(data[j].y) * (model.alphas[j] - alpha_j_old) * model.kernel(data[i].x,
data[j].x)

b2 := model.b - ej - f64(data[i].y) * (model.alphas[i] - alpha_i_old) * model.kernel(data[i].x,
data[j].x) - f64(data[j].y) * (model.alphas[j] - alpha_j_old) * model.kernel(data[j].x,
data[j].x)

if 0 < model.alphas[i] && model.alphas[i] < model.config.c {
model.b = b1
} else if 0 < model.alphas[j] && model.alphas[j] < model.config.c {
model.b = b2
} else {
model.b = (b1 + b2) / 2
}

num_changed_alphas++
}
}

if num_changed_alphas == 0 {
passes++
} else {
passes = 0
}

if passes >= model.config.max_iterations {
break
}
}

for i in 0 .. data.len {
if model.alphas[i] > 0 {
model.support_vectors << data[i]
}
}

return model
}

fn predict_raw(model &SVMModel, x []f64) f64 {
mut sum := 0.0
for i, sv in model.support_vectors {
sum += model.alphas[i] * f64(sv.y) * model.kernel(x, sv.x)
}
return sum + model.b
}

pub fn predict(model &SVMModel, x []f64) int {
return if predict_raw(model, x) >= 0 { 1 } else { -1 }
}

pub struct MulticlassSVM {
pub mut:
models [][]&SVMModel
classes []int
}

pub fn train_multiclass_svm(data []DataPoint, kernel KernelFunction, config SVMConfig) &MulticlassSVM {
mut classes := []int{}
for point in data {
if point.y !in classes {
classes << point.y
}
}
classes.sort()

mut models := [][]&SVMModel{len: classes.len, init: []&SVMModel{}}

for i in 0 .. classes.len {
models[i] = []&SVMModel{len: classes.len, init: unsafe { nil }} // unsafe { nil } kullanarak initialize ediyoruz
for j in i + 1 .. classes.len {
mut binary_data := []DataPoint{}
for point in data {
if point.y == classes[i] || point.y == classes[j] {
binary_data << DataPoint{
x: point.x
y: if point.y == classes[i] { 1 } else { -1 }
}
}
}
models[i][j] = train_svm(binary_data, kernel, config)
}
}

return &MulticlassSVM{
models: models
classes: classes
}
}

pub fn predict_multiclass(model &MulticlassSVM, x []f64) int {
mut votes := map[int]int{}
for i in 0 .. model.classes.len {
for j in i + 1 .. model.classes.len {
prediction := predict(model.models[i][j], x)
if prediction == 1 {
votes[model.classes[i]]++
} else {
votes[model.classes[j]]++
}
}
}

mut max_votes := 0
mut predicted_class := 0
for class, vote_count in votes {
if vote_count > max_votes {
max_votes = vote_count
predicted_class = class
}
}

return predicted_class
}
105 changes: 105 additions & 0 deletions ml/svm_test.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
module ml

import math

fn test_polynomial_kernel() {
x := [1.0, 2.0, 3.0]
y := [4.0, 5.0, 6.0]
kernel := polynomial_kernel(3)
result := kernel(x, y)
expected := math.pow(1 * 4 + 2 * 5 + 3 * 6 + 1, 3) // (32 + 1)^3
assert result == expected
}

fn test_rbf_kernel() {
x := [1.0, 2.0, 3.0]
y := [4.0, 5.0, 6.0]
gamma := 0.5
kernel := rbf_kernel(gamma)
result := kernel(x, y)
expected := math.exp(-gamma * ((1 - 4) * (1 - 4) + (2 - 5) * (2 - 5) + (3 - 6) * (3 - 6))) // exp(-0.5 * 27)
assert math.abs(result - expected) < 1e-6
}

fn test_train_svm() {
kernel := linear_kernel
data := [
DataPoint{[2.0, 3.0], 1},
DataPoint{[1.0, 1.0], -1},
DataPoint{[3.0, 4.0], 1},
DataPoint{[0.0, 0.0], -1},
]
config := SVMConfig{}
model := train_svm(data, kernel, config)

for point in data {
assert predict(model, point.x) == point.y
}
}

fn test_predict_svm() {
kernel := linear_kernel
data := [
DataPoint{[2.0, 3.0], 1},
DataPoint{[1.0, 1.0], -1},
DataPoint{[3.0, 4.0], 1},
DataPoint{[0.0, 0.0], -1},
]
config := SVMConfig{}
model := train_svm(data, kernel, config)

assert predict(model, [2.0, 3.0]) == 1
assert predict(model, [1.0, 1.0]) == -1
assert predict(model, [3.0, 4.0]) == 1
assert predict(model, [0.0, 0.0]) == -1
}

fn test_train_multiclass_svm() {
kernel := linear_kernel
data := [
DataPoint{[2.0, 3.0], 1},
DataPoint{[1.0, 1.0], 2},
DataPoint{[3.0, 4.0], 1},
DataPoint{[0.0, 0.0], 2},
DataPoint{[3.0, 3.0], 3},
]
config := SVMConfig{}
model := train_multiclass_svm(data, kernel, config)

for point in data {
assert predict_multiclass(model, point.x) == point.y
}
}

fn test_predict_multiclass_svm() {
kernel := linear_kernel
data := [
DataPoint{[2.0, 3.0], 1},
DataPoint{[1.0, 1.0], 2},
DataPoint{[3.0, 4.0], 1},
DataPoint{[0.0, 0.0], 2},
DataPoint{[3.0, 3.0], 3},
]
config := SVMConfig{}
model := train_multiclass_svm(data, kernel, config)

assert predict_multiclass(model, [2.0, 3.0]) == 1
assert predict_multiclass(model, [1.0, 1.0]) == 2
assert predict_multiclass(model, [3.0, 4.0]) == 1
assert predict_multiclass(model, [0.0, 0.0]) == 2
assert predict_multiclass(model, [3.0, 3.0]) == 3
}

fn test_kernels() {
kernels := [
linear_kernel,
polynomial_kernel(3),
rbf_kernel(0.5),
]
for kernel in kernels {
test_train_svm()
test_predict_svm()
test_train_multiclass_svm()
test_predict_multiclass_svm()
}
}
Loading