Skip to content
/ flex Public

FLex: Fuzzy Logic for Elixir

License

Notifications You must be signed in to change notification settings

valiot/flex

Repository files navigation

FLex Logo


Valiot Logo

FLex

A toolkit for fuzzy logic, this library includes functions to make fuzzy sets, variables and rules for creating a Fuzzy Logic System (FLS).

The goal of FLex is to easily design and efficiently operate fuzzy logic controllers without relying on external libraries.

Index

Features

The following list is the current supported backend for each component of the FLS:

  • Linguistic Rules:

    • Lambda function syntax
    • Tuple syntax
  • Membership functions:

    • Triangular
    • Trapezoidal
    • Saturation
    • Shoulder
    • Gauss
    • Generalized Bell
    • Sigmoid
    • Z-shaped
    • S-shaped
    • Pi-shaped
    • Linear Combination (Takagi-Sugeno, ANFIS only)
  • Fuzzy Inference Systems:

    • Mamdani:

      • Inference:

        • Min
      • Output Combination:

        • Root-sum-square
      • Defuzzification:

        • Centroid
    • Takagi-Sugeno:

      • Inference:

        • Max
        • Product
      • Defuzzification:

        • Weighted average
    • ANFIS:

      • Inference:

        • Max
        • Product
      • Defuzzification:

        • Weighted average
      • Optimization Method:

        • Backpropagation.
        • Hybrid (Backpropagation, LSE).

NOTE: All systems are single output.

Installation

The package can be installed by adding flex to your list of dependencies in mix.exs:

def deps do
  [
    {:flex, "~> 0.1.0"}
  ]
end

Usage


Sets

Step 1: Define all fuzzy sets with Flex.Set.new/1, the following options are require:

  • mf_type - (string) Defines which type of membership function uses the set (e.g., "triangle").
  • tag - (string) defines the linguistic name of the fuzzy set (e.g., "too hot"),
  • mf_params - The parameters of the membership function, see Membership functions.
t_h = Flex.Set.new(tag: "too hot", mf_type: "saturation", mf_params: [-2, 0, -4])
j_r = Flex.Set.new(tag: "just right", mf_type: "triangle", mf_params: [-2, 0, 2])
t_c = Flex.Set.new(tag: "too cold", mf_type: "shoulder", mf_params: [0, 2, 4])

g_h = Flex.Set.new(tag: "getting hotter", mf_type: "saturation", mf_params: [-5, 0, -10])
n_c = Flex.Set.new(tag: "no change", mf_type: "triangle", mf_params: [-5, 0, 5])
g_c = Flex.Set.new(tag: "getting colder", mf_type: "shoulder", mf_params: [0, 5, 10])

co = Flex.Set.new(tag: "cool", mf_type: "saturation", mf_params: [-50, 0, -100])
d_n = Flex.Set.new(tag: "do nothing", mf_type: "triangle", mf_params: [-50, 0, 50])
he = Flex.Set.new(tag: "heat", mf_type: "shoulder", mf_params: [0, 50, 100])

Variables

Step 2: Define all fuzzy variables with Flex.Variable.new/1, the following options are required:

  • :tag - (string) Defines the linguistic name of the fuzzy variable (e.g., "error"),
  • :fuzzy_sets - (list) Defines which type of membership function use the set (e.g., "triangle").
  • :type - (atom) Defines the type of variable (e.g., :antecedent or :consequent),
  • :range - (range) The range in which the variable exists.
fuzzy_sets = [t_h, j_r, t_c]
error = Flex.Variable.new(tag: "error", fuzzy_sets: fuzzy_sets, type: :antecedent, range: -4..4)

fuzzy_sets = [g_h, n_c, g_c]
dt_error = Flex.Variable.new(tag: "dt_error", fuzzy_sets: fuzzy_sets, type: :antecedent, range: -10..10)

fuzzy_sets = [co, d_n, he]
output = Flex.Variable.new(tag: "output", fuzzy_sets: fuzzy_sets, type: :consequent, range: -100..100)

Rules

Currently there are two types of syntax for defining the rules statement:

  • Anonymous function syntax:
  r1 = fn [at1, at2, con] ->
      (at1 ~> "too hot" &&& at2 ~> "getting colder") >>> con ~> "cool"
    end
  • Tuple syntax:
  r1 = {{{{"error", "too hot", "~>"}, {"dt_error", "getting colder", "~>"}, "&&&"}, "output",
      ">>>"}, "cool", "~>"}

Step 3: Define all Linguistic rules with Flex.Rule.new/1, the following options are required:

  • :statement - Defines the rule behavior.
  • :antecedent - (list) Defines the input variables.
  • :consequent - Defines the output variable.
  import Flex.Rule
  r1 =
    {{{{"error", "too hot", "~>"}, {"dt_error", "getting colder", "~>"}, "&&&"}, "output",
      ">>>"}, "cool", "~>"}

  r2 =
    {{{{"error", "just right", "~>"}, {"dt_error", "getting colder", "~>"}, "&&&"}, "output",
      ">>>"}, "heat", "~>"}

  r3 =
    {{{{"error", "too cold", "~>"}, {"dt_error", "getting colder", "~>"}, "&&&"}, "output",
      ">>>"}, "heat", "~>"}

  r4 =
    {{{{"error", "too hot", "~>"}, {"dt_error", "no change", "~>"}, "&&&"}, "output", ">>>"},
      "cool", "~>"}

  r5 =
    {{{{"error", "just right", "~>"}, {"dt_error", "no change", "~>"}, "&&&"}, "output", ">>>"},
      "do nothing", "~>"}

  r6 =
    {{{{"error", "too cold", "~>"}, {"dt_error", "no change", "~>"}, "&&&"}, "output", ">>>"},
      "heat", "~>"}

  r7 =
    {{{{"error", "too hot", "~>"}, {"dt_error", "getting hotter", "~>"}, "&&&"}, "output",
      ">>>"}, "cool", "~>"}

  r8 =
    {{{{"error", "just right", "~>"}, {"dt_error", "getting hotter", "~>"}, "&&&"}, "output",
      ">>>"}, "cool", "~>"}

  r9 =
    {{{{"error", "too cold", "~>"}, {"dt_error", "getting hotter", "~>"}, "&&&"}, "output",
      ">>>"}, "cool", "~>"}

  rule1 = Flex.Rule.new(statement: r1, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
  rule2 = Flex.Rule.new(statement: r2, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
  rule3 = Flex.Rule.new(statement: r3, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
  rule4 = Flex.Rule.new(statement: r4, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
  rule5 = Flex.Rule.new(statement: r5, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
  rule6 = Flex.Rule.new(statement: r6, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
  rule7 = Flex.Rule.new(statement: r7, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
  rule8 = Flex.Rule.new(statement: r8, consequent: output.tag, antecedent: [error.tag, dt_error.tag])
  rule9 = Flex.Rule.new(statement: r9, consequent: output.tag, antecedent: [error.tag, dt_error.tag])

  rules = [rule1, rule2, rule3, rule4, rule5, rule6, rule7, rule8, rule9]

Note: You need to import Flex.Rule module.

System

Step 4: Define FLS with Flex.System.start_link/1 or Flex.System.start_link/2 if you want to overwrite the GenServer options; the following options are require:

  • :rules - Defines the behavior of the system based on a list of rules.
  • :antecedent - (list) Defines the input variables.
  • :consequent - Defines the output variable.
  • :engine_type - Defines the inference engine behavior (default: Mamdini).
  {:ok, s_pid} = Flex.System.start_link(antecedent: [error, dt_error], consequent: output, rules: rules)

Step 5: Fit the FLS with a input vector using Flex.System.compute/2.

  result = Flex.System.compute(s_pid, [-1, -2.5])
  #result ~= -63.4 aprox

In test/system_test.exs there is an example of use, that is based on this example.

ANFIS

An adaptive network-based fuzzy inference system (ANFIS) is a kind of artificial neural network that is based on Takagi–Sugeno fuzzy inference system, this implementation use backpropagation, only Gaussian & Generalized Bell Membership functions are allowed. In examples/anfis_demo1.exs there is an example of use.

Documentation

The docs can be found at https://hexdocs.pm/flex.

Contributing

  • Fork our repository on github.
  • Fix or add what is needed.
  • Commit to your repository.
  • Issue a github pull request (fill the PR template).

License

See LICENSE.

TODO

  • Add more membership functions.
  • Add more inference methods.
  • Add more defuzzification methods.
  • Add helper functions.
  • Add metaprogramming for linguistic rules.

Releases

No releases published

Packages

No packages published

Languages