Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Mise en place dossier vidéo #11869

Open
wants to merge 61 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 2 commits
Commits
Show all changes
61 commits
Select commit Hold shift + click to select a range
909b739
Mise en place dossier vidéo
ptardien91 Jul 16, 2023
fb43584
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Jul 16, 2023
179a504
Merge branch 'master' into Maj-Pierre-1
glenn-jocher Jan 17, 2024
0a12b78
Auto-format by Ultralytics actions
UltralyticsAssistant Jan 17, 2024
9c40fa1
Merge branch 'master' into Maj-Pierre-1
glenn-jocher Jan 17, 2024
27e281c
Merge branch 'master' into Maj-Pierre-1
glenn-jocher Apr 9, 2024
e0081c2
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Apr 14, 2024
96fa951
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Apr 18, 2024
916427d
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Apr 27, 2024
2c295ec
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Apr 28, 2024
970aae4
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 5, 2024
89ec726
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 12, 2024
8e94670
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 12, 2024
3fadc22
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 12, 2024
8b5adc6
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 12, 2024
feeef7b
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 13, 2024
286aef6
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 18, 2024
906186f
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 24, 2024
6ac03fa
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 28, 2024
686e54c
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 29, 2024
539006c
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 29, 2024
11c6005
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant May 30, 2024
17185bf
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 8, 2024
9e6e179
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 8, 2024
b9ccea2
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 9, 2024
71e690e
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 16, 2024
fb7ecf0
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 16, 2024
5c750ed
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 17, 2024
bbce25f
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 19, 2024
706f5e2
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 19, 2024
fd12be4
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 20, 2024
a09e227
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 20, 2024
d62a4e7
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 20, 2024
5a2b670
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 20, 2024
ba4c197
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 22, 2024
e43430e
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 30, 2024
a7287e0
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 30, 2024
1718193
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jun 30, 2024
757d0b9
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 5, 2024
f60ef1c
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 8, 2024
637e6ed
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 8, 2024
c81d5bf
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 8, 2024
217deba
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 10, 2024
0854767
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 13, 2024
1c5d4e6
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 15, 2024
32d87cf
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 15, 2024
9fb81ae
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 17, 2024
4665b91
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 17, 2024
77b8d66
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 22, 2024
74fda00
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 23, 2024
0683a9f
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 25, 2024
e736772
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 29, 2024
929c672
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Jul 29, 2024
a010927
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Aug 11, 2024
a379411
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Aug 14, 2024
164d4e8
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Aug 14, 2024
f90b7ce
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Aug 19, 2024
7e69b5d
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Aug 20, 2024
f79479c
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Aug 20, 2024
ecde0f6
Merge branch 'master' into Maj-Pierre-1
UltralyticsAssistant Aug 24, 2024
3bd790c
Auto-format by https://ultralytics.com/actions
UltralyticsAssistant Aug 24, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file modified .gitignore
100755 → 100644
Empty file.
Empty file modified data/scripts/download_weights.sh
100755 → 100644
Empty file.
Empty file modified data/scripts/get_coco.sh
100755 → 100644
Empty file.
Empty file modified data/scripts/get_coco128.sh
100755 → 100644
Empty file.
Empty file modified data/scripts/get_imagenet.sh
100755 → 100644
Empty file.
303 changes: 303 additions & 0 deletions detect2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,303 @@
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.

Usage - sources:
$ python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream

Usage - formats:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""

import argparse
import os
import platform
import sys
from pathlib import Path

import torch

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative

from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode


@smart_inference_mode()
def run(
weights=ROOT / 'yolov5s.pt', # model path or triton URL
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
source = str(source)
save_img = True #not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
screenshot = source.lower().startswith('screen')
if is_url and is_file:
source = check_file(source) # download

#définir les classes dont on veut afficher les rectangles sur les images, afficher les 3 en même temps peut rendre l'image difficilement lisble
liste_classes_sauvegardées = ['Porte-Aiguille']
#Autres classes possibles : "GepBox" ou "Pincette"

# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir

# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size

# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs

# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
compteur = 0
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim

# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)

# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

# Process predictions
count = 0
for i, det in enumerate(pred): # per image
compteur += 1
count += 1
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
l = p.split('/')[-1].split('jpg')[0].split('_')
#print(l)
save_name = l[0] + '_' + l[1] + '_' + l[2]
id_texte = l[-1]
chemin = save_name + '_coordinates.txt'
if not os.path.isfile(chemin):
f = open(chemin, 'w')
f.write('ID, x1, y1, x2, y2, Confidence, Classe\n')
f.close()
p = Path(p) # to Path

save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string

# Write results
l_max = [0] * len(names)
count_max = 0
for *xyxy, conf, cls in reversed(det):
count_max += 1
if l_max[int(cls)] < float(conf.cpu().numpy()):
l_max[int(cls)] = count_max

count_max = 0
for *xyxy, conf, cls in reversed(det):
count_max += 1
if save_txt and l_max[int(
cls)] == count_max: # Write to file iif box with maximum conf for one class
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
x1 = int(xyxy[0].item())
y1 = int(xyxy[1].item())
x2 = int(xyxy[2].item())
y2 = int(xyxy[3].item())

confidence_score = conf
conf = float(conf.cpu().numpy())
class_index = cls
object_name = names[int(cls)]
f = open(chemin, 'a+')
f.write(id_texte + ',' + str(x1) + ',' + str(y1) + ',' + str(x2) + ',' + str(y2) + ',' +
str(conf) + ',' + str(object_name) + '\n')
f.close()

if (save_img or save_crop or view_img) and l_max[int(cls)] == count_max and names[int(
cls
)] in liste_classes_sauvegardées: # Add bbox to image iif box with maximum conf for PorteAiguille class
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))

count_max += 1

if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == 'Linux' and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond

# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)

# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")

# Print results
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)


def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt


def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))


if __name__ == '__main__':
opt = parse_opt()
main(opt)
Loading