Skip to content

🥰 Building AI-based conversational avatars lightning fast ⚡️💬

License

Notifications You must be signed in to change notification settings

uezo/aiavatarkit

Repository files navigation

AIAvatarKit

🥰 Building AI-based conversational avatars lightning fast ⚡️💬

AIAvatarKit Architecture Overview

✨ Features

  • Live anywhere: VRChat, cluster and any other metaverse platforms, and even devices in real world.
  • Extensible: Unlimited capabilities that depends on you.
  • Easy to start: Ready to start conversation right out of the box.

🍩 Requirements

  • VOICEVOX API in your computer or network reachable machine (Text-to-Speech)
  • API key for Speech Services of Google or Azure (Speech-to-Text)
  • API key for OpenAI API (ChatGPT)
  • Python 3.10 (Runtime)

🚀 Quick start

Install AIAvatarKit.

$ pip install aiavatar

Make the script as run.py.

from aiavatar import AIAvatar

app = AIAvatar(
    openai_api_key="YOUR_OPENAI_API_KEY",
    google_api_key="YOUR_GOOGLE_API_KEY"
)
app.start_listening_wakeword()

# # Tips: To terminate with Ctrl+C on Windows, use `while` to wait instead of `app.start_listening_wakeword()`
# app.start_listening_wakeword(False)
# while True:
#     time.sleep(1)

Start AIAvatar. Also, don't forget to launch VOICEVOX beforehand.

$ python run.py

Conversation will start when you say the wake word "こんにちは" (or "Hello" when language is not ja-JP).

Feel free to enjoy the conversation afterwards!

🔖 Contents

📕 Configuration Guide

Here are the configuration for each component.

🎓 Generative AI

You can set model and system message content when instantiate AIAvatar.

app = AIAvatar(
    openai_api_key="YOUR_OPENAI_API_KEY",
    google_api_key="YOUR_GOOGLE_API_KEY",
    model="gpt-4-turbo",
    system_message_content="You are my cat."
)

ChatGPT

If you want to configure in detail, create instance of ChatGPTProcessor with custom parameters and set it to AIAvatar.

from aiavatar.processors.chatgpt import ChatGPTProcessor

chat_processor = ChatGPTProcessor(
    api_key=OPENAI_API_KEY,
    model="gpt-4-turbo",
    temperature=0.0,
    max_tokens=200,
    system_message_content="You are my cat.",
    history_count=20,       # Count of messages included in request to ChatGPT as context
    history_timeout=120.0   # Duration in seconds to expire histories
)

app.chat_processor = chat_processor

Claude

Create instance of ClaudeProcessor with custom parameters and set it to AIAvatar. The default model is claude-3-sonnet-20240229.

from aiavatar.processors.claude import ClaudeProcessor

claude_processor = ClaudeProcessor(
    api_key="ANTHROPIC_API_KEY"
)

app = AIAvatar(
    google_api_key=GOOGLE_API_KEY,
    chat_processor=claude_processor
)

NOTE: We support Claude 3 on Anthropic API, not Amazon Bedrock for now.

Gemini

Create instance of GeminiProcessor with custom parameters and set it to AIAvatar. The default model is gemini-pro.

from aiavatar.processors.gemini import GeminiProcessor

gemini_processor = GeminiProcessor(
    api_key="YOUR_GOOGLE_API_KEY"
)

app = AIAvatar(
    google_api_key=GOOGLE_API_KEY,
    chat_processor=gemini_processor
)

NOTE: We support Gemini on Google AI Studio, not Vertex AI for now.

Dify

You can use the Dify API instead of a specific LLM's API. This eliminates the need to manage code for tools or RAG locally.

from aiavatar import AIAvatar
from aiavatar.processors.dify import DifyProcessor

chat_processor_dify = DifyProcessor(
    api_key=DIFY_API_KEY,
    user=DIFY_USER
)

app = AIAvatar(
    google_api_key=GOOGLE_API_KEY,
    chat_processor=chat_processor_dify
)

app.start_listening_wakeword()

Other LLMs

You can make your custom processor that uses other generative AIs such as Llama3 by implementing ChatProcessor interface. We provide the example later.🙏

🗣️ Voice

You can set speaker id and the base url for VOICEVOX server when instantiate AIAvatar.

app = AIAvatar(
    openai_api_key="YOUR_OPENAI_API_KEY",
    google_api_key="YOUR_GOOGLE_API_KEY",
    # 46 is Sayo. See http://127.0.0.1:50021/speakers to get all ids for characters
    voicevox_speaker_id=46
)

If you want to configure in detail, create instance of VoicevoxSpeechController with custom parameters and set it to AIAvatar.

from aiavatar.speech.voicevox import VoicevoxSpeechController

speech_controller = VoicevoxSpeechController(
    base_url="https",
    speaker_id=46,
    device_index=app.audio_devices.output_device
)

app.avatar_controller.speech_controller = speech_controller

Speech is handled in a separate subprocess to improve audio quality and reduce noises such as popping, caused by thread blocking during parallel processing of AI responses and speech output. For systems with limited resources, setting use_subprocess=False allows speech processing within the main process, potentially reintroducing some noise.

app.avatar_controller.speech_controller = VoicevoxSpeechController(
    base_url="http://127.0.0.1:50021",
    speaker_id=46,
    device_index=app.audio_devices.output_device,
    use_subprocess=False  # Set to False to handle speech in the main process
)

You can also set speech controller that uses alternative Text-to-Speech services. We provide AzureSpeechController for now.

from aiavatar.speech.azurespeech import AzureSpeechController

AzureSpeechController(
    AZURE_SUBSCRIPTION_KEY, AZURE_REGION,
    device_index=app.audio_devices.output_device,
    # # Set params if you want to customize
    # speaker_name="en-US-AvaNeural",
    # speaker_gender="Female",
    # lang="en-US"
)

The default speaker is en-US-JennyMultilingualNeural that support multi languages.

https://learn.microsoft.com/ja-jp/azure/ai-services/speech-service/language-support?tabs=tts

You can make custom speech controller by impelemting SpeechController interface or extending SpeechControllerBase.

🐓 Wakeword listener

Set wakewords when instantiate AIAvatar. Conversation will start when AIAvatar recognizes the one of the words in this list.

app = AIAvatar(
    openai_api_key=OPENAI_API_KEY,
    google_api_key=GOOGLE_API_KEY,
    wakewords=["Hello", "こんにちは"],
)

If you want to configure in detail, create instance of WakewordListener with custom parameters and set it to AIAvatar.

from aiavatar.listeners.wakeword import WakewordListener

wakeword_listener = WakewordListener(
    api_key=GOOGLE_API_KEY,
    wakewords=["Hello", "こんにちは"],
    device_index=app.audio_devices.input_device,
    timeout=0.2,        # Duration in seconds to wait for silence before ending speech recognition
    max_duration=1.5    # Maximum duration in seconds to recognize speech before stopping
)

app.wakeword_listener = wakeword_listener

🙏 Request listener

If you want to configure in detail, create instance of VoiceRequestListener with custom parameters and set it to AIAvatar.

from aiavatar.listeners.voicerequest import VoiceRequestListener

request_listener = VoiceRequestListener(
    api_key=GOOGLE_API_KEY,
    device_index=app.audio_devices.input_device,,
    detection_timeout=15.0, # Timeout in seconds to end the process if speech does not start within this duration
    timeout=0.5,            # Duration in seconds to wait for silence before ending speech recognition
    max_duration=20.0,      # Maximum duration in seconds to recognize speech before stopping
    min_duration=0.2,       # Minimum duration in seconds for speech to be recognized; shorter sounds are ignored
)

app.request_listener = request_listener

✨ Using Azure Listeners

We strongly recommend using AzureWakewordListener and AzureRequestListner that are more stable than the default listners. Check examples/run_azure.py that works out-of-the-box.

Install Azure SpeechSDK.

$ pip install azure-cognitiveservices-speech

Change script to use AzureRequestListener and AzureWakewordListener.

from aiavatar.listeners.azurevoicerequest import AzureVoiceRequestListener
from aiavatar.listeners.azurewakeword import AzureWakewordListener

YOUR_SUBSCRIPTION_KEY = "YOUR_SUBSCRIPTION_KEY"
YOUR_REGION_NAME = "YOUR_REGION_NAME"

# Create AzureRequestListener
azure_request_listener = AzureVoiceRequestListener(
    YOUR_SUBSCRIPTION_KEY,
    YOUR_REGION_NAME
)

# Create AzureWakewordListner
async def on_wakeword(text):
    logger.info(f"Wakeword: {text}")
    await app.start_chat()

azrue_wakeword_listener = AzureWakewordListener(
    YOUR_SUBSCRIPTION_KEY,
    YOUR_REGION_NAME,
    on_wakeword=on_wakeword,
    wakewords=["こんにちは"]
)

# Create AIAVater with AzureRequestListener and Azure WakewordListener
app = AIAvatar(
    openai_api_key=OPENAI_API_KEY,
    request_listener=azure_request_listener,
    wakeword_listener=azrue_wakeword_listener
)

To specify the microphone device by setting device_name argument. See Microsoft Learn to know how to check the device UID on each platform. https://learn.microsoft.com/en-us/azure/ai-services/speech-service/how-to-select-audio-input-devices

We provide a script for MacOS. Just run it on Xcode.

Device UID: BuiltInMicrophoneDevice, Name: MacBook Proのマイク
Device UID: com.vbaudio.vbcableA:XXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX, Name: VB-Cable A
Device UID: com.vbaudio.vbcableB:XXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX, Name: VB-Cable B

For example, the UID for the built-in microphone on MacOS is BuiltInMicrophoneDevice.

Then, set it as the value of device_name.

azure_request_listener = AzureVoiceRequestListener(
    YOUR_SUBSCRIPTION_KEY,
    YOUR_REGION_NAME,
    device_name="BuiltInMicrophoneDevice"
)

azure_wakeword_listener = AzureWakewordListener(
    YOUR_SUBSCRIPTION_KEY,
    YOUR_REGION_NAME,
    on_wakeword=on_wakeword,
    wakewords=["Hello", "こんにちは"],
    device_name="BuiltInMicrophoneDevice"
)

🍥 Using OpenAI's audio APIs

OpenAI's Speech-to-Text and Text-to-Speech capabilities provide dynamic speech recognition and voice output across multiple languages, without the need for fixed language settings.

from aiavatar import AIAvatar
from aiavatar.device import AudioDevice
from aiavatar.listeners.openailisteners import (
    OpenAIWakewordListener,
    OpenAIVoiceRequestListener
)
from aiavatar.speech.openaispeech import OpenAISpeechController

# Get default audio devices
devices = AudioDevice()

# Speech
speech_controller = OpenAISpeechController(
    api_key=OPENAI_API_KEY,
    device_index=devices.output_device
)

# Wakeword
async def on_wakeword(text):
    await app.start_chat(request_on_start=text, skip_start_voice=True)

wakeword_listener = OpenAIWakewordListener(
    api_key=OPENAI_API_KEY,
    device_index=devices.input_device,
    wakewords=["こんにちは"],
    on_wakeword=on_wakeword
)

# Request
request_listener = OpenAIVoiceRequestListener(
    api_key=OPENAI_API_KEY,
    device_index=devices.input_device
)

# Create AIAvatar with OpenAI Components
app = AIAvatar(
    openai_api_key=OPENAI_API_KEY,
    wakeword_listener=wakeword_listener,
    request_listener=request_listener,
    speech_controller=speech_controller,
    noise_margin=10.0,
    verbose=True
)
app.start_listening_wakeword()

🔈 Audio device

You can specify the audio devices to be used in components by name or index.

from aiavatar.device import AudioDevice

# Get devices by name or index
audio_device = AudioDevice(
    input_device="マイク",
    output_device="スピーカー"
)

Set device to components.

# Set output device to SpeechController
speech_controller = VoicevoxSpeechControllerSubProcess(
    device_index=audio_device.output_device,
    base_url="http://127.0.0.1:50021",
    speaker_id=46,
)

# Set input device to Listeners
request_listener = VoiceRequestListener(
    device_index=audio_device.input_device
)

wakeword_listener = WakewordListener(
    device_index=audio_device.input_device,
    wakewords=["Hello", "こんにちは"]
)

# Set components to AIAvatar
app = AIAvatar(
    openai_api_key=OPENAI_API_KEY,
    speech_controller=speech_controller,
    request_listener=request_listener,
    wakeword_listener=wakeword_listener
)

🥰 Face expression

To control facial expressions within conversations, set the facial expression names and values in FaceController.faces as shown below, and then include these expression keys in the response message by adding instructions to the prompt.

app.avatar_controller.face_controller.faces = {
    "neutral": "🙂",
    "joy": "😀",
    "angry": "😠",
    "sorrow": "😞",
    "fun": "🥳"
}

app.chat_processor.system_message_content = """# Face Expression

* You have the following expressions:

- joy
- angry
- sorrow
- fun

* If you want to express a particular emotion, please insert it at the beginning of the sentence like [face:joy].

Example
[face:joy]Hey, you can see the ocean! [face:fun]Let's go swimming.
"""

This allows emojis like 🥳 to be autonomously displayed in the terminal during conversations. To actually control the avatar's facial expressions in a metaverse platform, instead of displaying emojis like 🥳, you will need to use custom implementations tailored to the integration mechanisms of each platform. Please refer to our VRChatFaceController as an example.

💃 Animation

Now writing... ✍️

👀 Vision

AIAvatarKit captures and sends image to AI dynamically when the AI determine that vision is required to process the request from the user. This gives "eyes" to your AIAvatar in metaverse platforms like VRChat.

To use vision, instruct vision tag in the system message and ChatGPTProcessor.get_image.

import io
import pyautogui    # pip install pyautogui
from aiavatar.processors.chatgpt import ChatGPTProcessor
from aiavatar.device.video import VideoDevice   # pip install opencv-python

# Instruct vision tag in the system message
system_message_content = """
### Using Vision

If you need an image to process a user's request, you can obtain it using the following methods:

- screenshot
- camera

If an image is needed to process the request, add an instruction like [vision:screenshot] to your response to request an image from the user.

By adding this instruction, the user will provide an image in their next utterance. No comments about the image itself are necessary.

Example:

user: Look! This is the sushi I had today.
assistant: [vision:screenshot] Let me take a look.
"""

# Implement get_image
default_camera = VideoDevice(device_index=0, width=960, height=540)

async def get_image(source: str=None) -> bytes:
    if source == "camera":
        return await default_camera.capture_image("camera.jpg")   # Save current image for debug
    else:
        buffered = io.BytesIO()
        image = pyautogui.screenshot(region=(0, 0, 1280, 720))
        image.save(buffered, format="PNG")
        image.save("screenshot.png")   # Save current image for debug
        return buffered.getvalue()

# Configure ChatGPTProcessor
chat_processor = ChatGPTProcessor(
    api_key=OPENAI_API_KEY,
    model="gpt-4o",
    system_message_content=system_message_content,
    use_vision = True
)
chat_processor.get_image = get_image

NOTE

  • Only the latest image will be sent to ChatGPT to avoid performance issues.
  • Gemini and Claude can also use vision in the same way. Simply replace ChatGPTProcessor with ClaudeProcessor or GeminiProcessor.

##  🎭 Custom Behavior

You can invoke custom implementations when listening to requests from user, processing those requests, or when recognized a wake word to start conversation.

In the following example, changing face expressions at each timing aims to enhance the interaction experience with the AI avatar.

# Set face when the character is listening the users voice
async def set_listening_face():
    await app.avatar_controller.face_controller.set_face("listening", 3.0)
app.request_listener.on_start_listening = set_listening_face

# Set face when the character is processing the request
async def set_thinking_face():
    await app.avatar_controller.face_controller.set_face("thinking", 3.0)
app.chat_processor.on_start_processing = set_thinking_face

async def on_wakeword(text):
    logger.info(f"Wakeword: {text}")
    # Set face when wakeword detected
    await app.avatar_controller.face_controller.set_face("smile", 2.0)
    await app.start_chat(request_on_start=text, skip_start_voice=True)

🌎 Platform Guide

AIAvatarKit is capable of operating on any platform that allows applications to hook into audio input and output. The platforms that have been tested include:

  • VRChat
  • cluster
  • Vket Cloud

In addition to running on PCs to operate AI avatars on these platforms, you can also create a communication robot by connecting speakers, a microphone, and, if possible, a display to a Raspberry Pi.

🐈 VRChat

  • 2 Virtual audio devices (e.g. VB-CABLE) are required.
  • Multiple VRChat accounts are required to chat with your AIAvatar.

Get started

First, run the commands below in python interpreter to check the audio devices.

$ % python

>>> from aiavatar import AudioDevice
>>> AudioDevice.list_audio_devices()
Available audio devices:
0: Headset Microphone (Oculus Virt
    :
6: CABLE-B Output (VB-Audio Cable
7: Microsoft サウンド マッパー - Output
8: SONY TV (NVIDIA High Definition
    :
13: CABLE-A Input (VB-Audio Cable A
    :

In this example,

  • To use VB-Cable-A for microphone for VRChat, index for output_device is 13 (CABLE-A Input).
  • To use VB-Cable-B for speaker for VRChat, index for input_device is 6 (CABLE-B Output). Don't forget to set VB-Cable-B Input as the default output device of Windows OS.

Then edit run.py like below.

# Create AIAvatar
app = AIAvatar(
    GOOGLE_API_KEY,
    OPENAI_API_KEY,
    model="gpt-3.5-turbo",
    system_message_content=system_message_content,
    input_device=6      # Listen sound from VRChat
    output_device=13,   # Speak to VRChat microphone
)

You can also set the name of audio devices instead of index (partial match, ignore case).

    input_device="CABLE-B Out"      # Listen sound from VRChat
    output_device="cable-a input",   # Speak to VRChat microphone

Run it.

$ run.py

Launch VRChat as desktop mode on the machine that runs run.py and log in with the account for AIAvatar. Then set VB-Cable-A to microphone in VRChat setting window.

That's all! Let's chat with the AIAvatar. Log in to VRChat on another machine (or Quest) and go to the world the AIAvatar is in.

Face Expression

AIAvatarKit controls the face expression by Avatar OSC.

LLM(ChatGPT/Claude/Gemini)
response with face tag [face:joy]Hello!
AIAvatarKit(VRCFaceExpressionController)
osc FaceOSC=1
VRChat(FX AnimatorController)

😆

So at first, setup your avatar the following steps:

  1. Add avatar parameter FaceOSC (type: int, default value: 0, saved: false, synced: true).
  2. Add FaceOSC parameter to the FX animator controller.
  3. Add layer and put states and transitions for face expression to the FX animator controller.
  4. (option) If you use the avatar that is already used in VRChat, add input parameter configuration to avatar json.

Next, use VRChatFaceController.

from aiavatar.face.vrchat import VRChatFaceController

# Setup VRChatFaceContorller
vrc_face_controller = VRChatFaceController(
    faces={
        "neutral": 0,   # always set `neutral: 0`

        # key = the name that LLM can understand the expression
        # value = FaceOSC value that is set to the transition on the FX animator controller
        "joy": 1,
        "angry": 2,
        "sorrow": 3,
        "fun": 4
    }
)

Lastly, add face expression section to the system prompt.

# Make system prompt
system_message_content = """
# Face Expression

* You have following expressions:

- joy
- angry
- sorrow
- fun

* If you want to express a particular emotion, please insert it at the beginning of the sentence like [face:joy].

Example
[face:joy]Hey, you can see the ocean! [face:fun]Let's go swimming.
"""

# Set them to AIAvatar
app = AIAvatar(
    openai_api_key=OPENAI_API_KEY,
    google_api_key=GOOGLE_API_KEY,
    face_controller=vrc_face_controller,
    system_message_content=system_message_content
)

You can test it not only through the voice conversation but also via the REST API.

🍓 Raspberry Pi

Now writing... ✍️

🧩 RESTful APIs

You can control AIAvatar via RESTful APIs. The provided functions are:

  • WakewordLister

    • start: Start WakewordListener
    • stop: Stop WakewordListener
    • status: Show status of WakewordListener
  • Avatar

    • speech: Speak text with face expression and animation
    • face: Set face expression
    • animation: Set animation
  • System

    • log: Show recent logs

To use REST APIs, create API app and set router instead of calling app.start_listening_wakeword().

from fastapi import FastAPI
from aiavatar import AIAvatar
from aiavatar.api.router import get_router

app = AIAvatar(
    openai_api_key=OPENAI_API_KEY,
    google_api_key=GOOGLE_API_KEY
)

# app.start_listening_wakeword()

# Create API app and set router
api = FastAPI()
api_router = get_router(app, "aiavatar.log")
api.include_router(api_router)

Start API with uvicorn.

$ uvicorn run:api

Call /wakeword/start to start wakeword listener.

$ curl -X 'POST' \
  'http://127.0.0.1:8000/wakeword/start' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "wakewords": []
}'

See API spec and try it on http://127.0.0.1:8000/docs .

NOTE: AzureWakewordListeners stops immediately but the default WakewordListener stops after it recognizes wakeword.

🤿 Deep dive

Advanced usases.

⚡️ Function Calling

Use chat_processor.add_function to use ChatGPT function calling. In this example, get_weather will be called autonomously.

# Add function
async def get_weather(location: str):
    await asyncio.sleep(1.0)
    return {"weather": "sunny partly cloudy", "temperature": 23.4}

app.chat_processor.add_function(
    name="get_weather",
    description="Get the current weather in a given location",
    parameters={
        "type": "object",
        "properties": {
            "location": {
                "type": "string"
            }
        }
    },
    func=get_weather
)

And, after get_weather called, message to get voice response will be sent to ChatGPT internally.

{
    "role": "function",
    "content": "{\"weather\": \"sunny partly cloudy\", \"temperature\": 23.4}",
    "name": "get_weather"
}

🔍 Other Tips

Useful information for developping and debugging.

🎤 Testing audio I/O

Using the script below to test the audio I/O before configuring AIAvatar.

  • Step-by-Step audio device configuration.
  • Speak immediately after start if the output device is correctly configured.
  • All recognized text will be shown in console if the input device is correctly configured.
  • Just echo on wakeword recognized.
import asyncio
import logging
from aiavatar import (
    AudioDevice,
    VoicevoxSpeechController,
    WakewordListener
)

GOOGLE_API_KEY = "YOUR_API_KEY"
VV_URL = "http://127.0.0.1:50021"
VV_SPEAKER = 46
INPUT_DEVICE = -1
OUTPUT_DEVICE = -1

# Configure root logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
log_format = logging.Formatter("[%(levelname)s] %(asctime)s : %(message)s")
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(log_format)
logger.addHandler(streamHandler)

# Select input device
if INPUT_DEVICE < 0:
    input_device_info = AudioDevice.get_input_device_with_prompt()
else:
    input_device_info = AudioDevice.get_device_info(INPUT_DEVICE)
input_device = input_device_info["index"]

# Select output device
if OUTPUT_DEVICE < 0:
    output_device_info = AudioDevice.get_output_device_with_prompt()
else:
    output_device_info = AudioDevice.get_device_info(OUTPUT_DEVICE)
output_device = output_device_info["index"]

logger.info(f"Input device: [{input_device}] {input_device_info['name']}")
logger.info(f"Output device: [{output_device}] {output_device_info['name']}")

# Create speaker
speaker = VoicevoxSpeechController(
    VV_URL,
    VV_SPEAKER,
    device_index=output_device
)

asyncio.run(speaker.speak("オーディオデバイスのテスターを起動しました。私の声が聞こえていますか?"))

# Create WakewordListener
wakewords = ["こんにちは"]
async def on_wakeword(text):
    logger.info(f"Wakeword: {text}")
    await speaker.speak(f"{text}")

wakeword_listener = WakewordListener(
    api_key=GOOGLE_API_KEY,
    wakewords=["こんにちは"],
    on_wakeword=on_wakeword,
    verbose=True,
    device_index=input_device
)

# Start listening
ww_thread = wakeword_listener.start()
ww_thread.join()

🎚️ Noise Filter

AIAvatarKit automatically adjusts the noise filter for listeners when you instantiate an AIAvatar object. To manually set the noise filter level for voice detection, set auto_noise_filter_threshold to False and specify the volume_threshold_db in decibels (dB).

app = AIAvatar(
    openai_api_key=OPENAI_API_KEY,
    google_api_key=GOOGLE_API_KEY,
    auto_noise_filter_threshold=False,
    volume_threshold_db=-40   # Set the voice detection threshold to -40 dB
)

🧪 LM Studio API

Use ChatGPTProcessor with some arguments.

  • base_url: URL for LM Studio local server
  • model: Name of model
  • parse_function_call_in_response: Always set False
from aiavatar import AIAvatar
from aiavatar.processors.chatgpt import ChatGPTProcessor

chat_processor = ChatGPTProcessor(
    api_key=OPENAI_API_KEY,
    base_url="http://127.0.0.1:1234/v1",
    model="mmnga/DataPilot-ArrowPro-7B-KUJIRA-gguf",
    parse_function_call_in_response=False
)

app = AIAvatar(
    google_api_key=GOOGLE_API_KEY,
    chat_processor=chat_processor
)
app.start_listening_wakeword()

⚡️ Use custom listener

It's very easy to add your original listeners. Just make it run on other thread and invoke app.start_chat() when the listener handles the event.

Here the example of FileSystemListener that invokes chat when test.txt is found on the file system.

import asyncio
import os
from threading import Thread
from time import sleep

class FileSystemListener:
    def __init__(self, on_file_found):
        self.on_file_found = on_file_found

    def start_listening(self):
        while True:
            # Check file every 3 seconds
            if os.path.isfile("test.txt"):
                asyncio.run(self.on_file_found())
            sleep(3)

    def start(self):
        th = Thread(target=self.start_listening, daemon=True)
        th.start()
        return th

Use this listener in run.py like below.

# Event handler
def on_file_found():
    asyncio.run(app.chat())

# Instantiate
fs_listener = FileSystemListener(on_file_found)
fs_thread = fs_listener.start()
    :
# Wait for finish
fs_thread.join()

About

🥰 Building AI-based conversational avatars lightning fast ⚡️💬

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages