Skip to content

Github repository for time series classification project

License

Notifications You must be signed in to change notification settings

tknechtel/dl_tsc

Repository files navigation

dl_tsc

Deep Learning for time series classification - A review and experimental study

Results

UCR Archive

  • Python;
  • Matplotlib
  • Numba;
  • NumPy;
  • Pandas;
  • scikit-learn;
  • sktime;
  • scipy;
  • TensorFlow-GPU;
  • tqdm;
  • catch22;
  • tbb.

Code

The code is divided as follows:

  • The main.py python file contains the necessary code to run an experiement.
  • The utils folder contains the necessary functions to read the datasets and visualize the plots.
  • The classifiers folder contains the different classifiers including: Rocket, MiniRocket, MultiRocket, InceptionTime, ResNet...

Usage

Arguments:
-d --dataset_names          : dataset names (optional, default=all)
-c --classifier_names       : classifier (optional, default=all)
-o --output_path            : path to results (optional, default=root_dir)
-i --iterations             : number of runs (optional, default=3)
-g --generate_results_csv   : make results.csv (optional, default=False)

Examples:
> python main.py
> python main.py -d Adiac Coffee -c multirocket_default -i 1
> python main.py -g True

The framework expects data from the UCR archive in the .ts format.

The folder structure for the datasets is as follows: /UCRArchive_2018/dataset_name/

For example, the train/test of Adiac should be saved under /UCRArchive_2018/Adiac/

Calling main.py without any arguments trains every model on every dataset.

Results are saved in /results.

To generate a results.csv for the tested models, main.py -g True is called.

Critical difference diagrams

If you would like to generate such a diagram, take a look at this code!

References

About

Github repository for time series classification project

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published