-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassignclassCRPheuristic.m
53 lines (43 loc) · 1.66 KB
/
assignclassCRPheuristic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function [D, Q, lambda, Cnew] = assignclassCRPheuristic(newcust_total, D,Q,lambda,C,hyper)
newcust_count = 0;
prob_existing_table_ell = NaN(1, size(C, 2) + newcust_total);
Cnew = zeros(newcust_total, 1);
Dnew = NaN(2, 2, newcust_total);
Sigmavnew = NaN(4, 4, newcust_total);
lambdanew = NaN(newcust_total, 1);
while newcust_count < newcust_total
total_customers = size(C,2) + newcust_count;
for l = 1:(max([C.', Cnew.'].'))
customer_count = sum([C.', Cnew.'].' == l);
prob_existing_table_ell(l) = customer_count/(hyper.alphadp + total_customers);
end
if hyper.alphadp == inf
prob_existing_table_ell(1:l) = 0;
prob_new_table = 1;
else
prob_new_table = hyper.alphadp/(hyper.alphadp + total_customers);
end
newcust_count = newcust_count + 1;
Cnew(newcust_count) = find(mnrnd(1, [prob_existing_table_ell(1:l), prob_new_table]./(sum([prob_existing_table_ell(1:l), prob_new_table]))));
% Generate extent matrices
lsqinv = gamrnd(2, 1./(hyper.Elsq_data.*(2 - 1)), 2, 1);
lsq = 1./lsqinv;
Dnew(:,:, newcust_count) = diag(lsq);
% Generate driving noise covariance matrices
ssqinv = gamrnd(2, 1./(hyper.Essq_data.*(2 - 1)), 2, 1);
ssq = 1./ssqinv;
Sigmavnew(:, :, newcust_count) = diag(ssq([1, 1, 2, 2]));
%Generate mean number of measurements
lambdanew(newcust_count) = gamrnd(hyper.aM0, 1./hyper.bM0);
end
%C = [C, Cnew];
D = cat(3, D, Dnew);
Q = cat(3, Q, Sigmavnew);
if isempty(lambda) && isempty(lambdanew)
lambda = zeros(1,0);
elseif isempty(lambda)
lambda = lambdanew;
else
lambda = cat(1, lambda, lambdanew);
end
end