Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 23 additions & 1 deletion docs/refs.bib
Original file line number Diff line number Diff line change
Expand Up @@ -240,4 +240,26 @@ @article{jackson1980principal
pages={201--213},
year={1980},
publisher={Taylor \& Francis}
}
}

@article{reprref1,
author={Adali, Tülay and Kantar, Furkan and Akhonda, Mohammad Abu Baker Siddique and Strother, Stephen and Calhoun, Vince D. and Acar, Evrim},
journal={IEEE Signal Processing Magazine},
title={Reproducibility in Matrix and Tensor Decompositions: Focus on model match, interpretability, and uniqueness},
year={2022},
volume={39},
number={4},
pages={8-24},
keywords={Problem-solving;Reproducibility of results;Data models;Matrix decomposition},
doi={10.1109/MSP.2022.3163870}}

@article{reprref2,
title={Characterizing human postprandial metabolic response using multiway data analysis},
author={Yan, Shi and Li, Lu and Horner, David and Ebrahimi, Parvaneh and Chawes, Bo and Dragsted, Lars O and Rasmussen, Morten A and Smilde, Age K and Acar, Evrim},
journal={Metabolomics},
volume={20},
number={3},
pages={50},
year={2024},
publisher={Springer}
}

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please add the following reference as well.

@article{reprref3,
author = {Fog Froriep Halberg, Helene and Bevilacqua, Marta and Rinnan, Åsmund},
title = {Resampling as a Robust Measure of Model Complexity in PARAFAC Models},
journal = {Journal of Chemometrics},
volume = {38},
number = {12},
pages = {e3601},
doi = {https://doi.org/10.1002/cem.3601},
year = {2024}
}

61 changes: 61 additions & 0 deletions docs/sg_execution_times.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@

:orphan:

.. _sphx_glr_sg_execution_times:


Computation times
=================
**02:50.968** total execution time for 9 files **from all galleries**:

.. container::

.. raw:: html

<style scoped>
<link href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/5.3.0/css/bootstrap.min.css" rel="stylesheet" />
<link href="https://cdn.datatables.net/1.13.6/css/dataTables.bootstrap5.min.css" rel="stylesheet" />
</style>
<script src="https://code.jquery.com/jquery-3.7.0.js"></script>
<script src="https://cdn.datatables.net/1.13.6/js/jquery.dataTables.min.js"></script>
<script src="https://cdn.datatables.net/1.13.6/js/dataTables.bootstrap5.min.js"></script>
<script type="text/javascript" class="init">
$(document).ready( function () {
$('table.sg-datatable').DataTable({order: [[1, 'desc']]});
} );
</script>

.. list-table::
:header-rows: 1
:class: table table-striped sg-datatable

* - Example
- Time
- Mem (MB)
* - :ref:`sphx_glr_auto_examples_plot_replicability_analysis.py` (``../examples/plot_replicability_analysis.py``)
- 02:50.968
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_bike_plotly.py` (``../examples/plot_bike_plotly.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_core_consistency.py` (``../examples/plot_core_consistency.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_labelled_decompositions.py` (``../examples/plot_labelled_decompositions.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_optimisation_diagnostic.py` (``../examples/plot_optimisation_diagnostic.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_outlier_detection.py` (``../examples/plot_outlier_detection.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_selecting_aminoacids_components.py` (``../examples/plot_selecting_aminoacids_components.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_split_half_analysis.py` (``../examples/plot_split_half_analysis.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_working_with_xarray.py` (``../examples/plot_working_with_xarray.py``)
- 00:00.000
- 0.0
200 changes: 200 additions & 0 deletions examples/plot_replicability_analysis.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
"""
.. _replicability_analysis:
Replicability analysis
----------------
This example desrcibes how replicability of patterns can be used to guide the component selection process for PARAFAC models :cite:p:`reprref1, reprref2`.

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please add reprref3 (see comment above).

This process evaluates the consistency of the uncovered patterns by fitting the model to different subsets of the data. The rationale is that if the appropriate number of components is used, the uncovered patterns should be consistent. This can be seen as a more strict extension of `split-half analysis <https://tensorly.org/viz/stable/auto_examples/plot_split_half_analysis.html>`_ where a higher number of smaller subsets of the input are removed.
"""

###############################################################################
# Imports and utilities
# ^^^^^^^^^^^^^^^^^^^^^

import matplotlib.pyplot as plt
import numpy as np
import tensorly as tl
from tensorly.decomposition import parafac

import sklearn
from sklearn.model_selection import RepeatedKFold

import tlviz

rng = np.random.default_rng(1)

###############################################################################
# To fit PARAFAC models, we need to solve a non-convex optimization problem, possibly with local minima. It is
# therefore useful to fit several models with the same number of components using many different random
# initialisations.


def fit_many_parafac(X, num_components, num_inits=5):
return [
parafac(
X,
num_components,
n_iter_max=1000,
tol=1e-8,
init="random",
orthogonalise=True,
linesearch=True,
random_state=i,
)
for i in range(num_inits)
]


###############################################################################
# Creating simulated data
# ^^^^^^^^^^^^^^^^^^^^^^^
#
# We start with some simulated data, since then, we know exactly how many components there are in the data.

cp_tensor, dataset = tlviz.data.simulated_random_cp_tensor((30, 40, 25), 3, noise_level=0.3, labelled=True)

###############################################################################
# The replicability analysis boils down to the following steps:

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Consider adding Fig1 from reprref3 as illustration?

#
# 1. Split the data in a (user-chosen) mode into :math:`N` folds (user-chosen).
# 2. Create :math:`N` train subsets by subtracting each fold from the complete

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe just use 'subset' instead of train, to avoid implying that we also use a 'test' set.

# dataset.
# 3. Fit multiple initializations to each train subset and choose the *best* run
# according to lowest loss (total of :math:`N` *best* runs).
# 4. Repeat the above process :math:`M` times (user-chosen), to find a total of
# :math:`M N` *best* runs.
# 5. Compare, in terms of FMS, the factorization to evaluate the replicability
# of the uncovered patterns.
Comment on lines +58 to +69

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Rephrase a bit based on our paper :)



###############################################################################
# Splitting the data
# ^^^^^^^^^^^^^^^^^^
#

splits = 5 # N
repeats = 10 # M

models = {}
split_indices = {} # Keeps track of which indices are used in each subset

for rank in [2, 3, 4, 5]:

print(f"{rank} components")

rskf = RepeatedKFold(n_splits=splits, n_repeats=repeats, random_state=1)

models[rank] = []
split_indices[rank] = []

for train_index, _ in rskf.split(dataset):

# Sort rows for consistent ordering (not necessary)

sorted_train_index = sorted(train_index)
split_indices[rank].append(sorted_train_index)
train = dataset[sorted_train_index]

train = train / tl.norm(train) # Normalize the tensor without leaking info from other folds

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add # Normalize (pre-process)...


current_models = fit_many_parafac(train.data, rank)
current_model = tlviz.multimodel_evaluation.get_model_with_lowest_error(current_models, train)
models[rank].append(current_model)

###############################################################################
# Often, the mode one will be splitting within refers to different samples
# Depending on the use-case, it might be deemed reasonable to retain the
# distributions of some properties in each subset. For this goal,
# `RepeatedStratifiedKFold <https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html#sklearn.model_selection.RepeatedStratifiedKFold>`_
# can be used.
#
# Each subset might require certain pre-processing. It is important to pre-process
# each subset in isolation to avoid leaking information from the omitted part of the input.
# For example, in this case we normalize each subset to unit norm independently.
# Also, notice that ``for train_index, _ in rskf.split(dataset):`` is embarrassingly parallel.

###############################################################################
# Computing and plotting factor similarity
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Here, we are skipping the mode we split (``mode=0``).

replicability_stability = {}
for rank in [2, 3, 4, 5]:
replicability_stability[rank] = []
for i, cp_i in enumerate(models[rank]):
for j, cp_j in enumerate(models[rank]):
if i < j: # include every pair only once and omit i == j
fms = tlviz.factor_tools.factor_match_score(cp_i, cp_j, consider_weights=False, skip_mode=0)
replicability_stability[rank].append(fms)

ranks = sorted(replicability_stability.keys())

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Drop the sorting?

data = [np.ravel(replicability_stability[r]) for r in ranks]

fig, ax = plt.subplots()
ax.axhline(0.9, linestyle="--", color="gray")
ax.boxplot(data, positions=ranks)
ax.set_xlabel("Number of components")
ax.set_ylabel("Replicability stability")
plt.show()

###############################################################################
# Here, we can observe that over-estimating the number of components
# results in not replicable patterns, indicated by low FMS.

###############################################################################
# Computing and plotting factor similarity (alt.)
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# There is an alternative way to estimate the replicability of the uncovered patterns
# that includes the mode we are splitting within. When comparing two factorizations in
# terms of FMS, we can include the previously skipped factor by using only the indices
# presend in both subsets.

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

type present


replicability_stability_alt = {}
for rank in [2, 3, 4, 5]:
replicability_stability_alt[rank] = []
for i, cp_i in enumerate(models[rank]):
for j, cp_j in enumerate(models[rank]):
if i < j: # include every pair only once and omit i == j

weights_i, (A_i, B_i, C_i) = cp_i
weights_j, (A_j, B_j, C_j) = cp_j

indices_subset_i = sorted(split_indices[rank][i])
indices_subset_j = sorted(split_indices[rank][j])

common_indices = sorted(list(set(indices_subset_i).intersection(set(indices_subset_j))))

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Also drop sorting?


indices2use_i = []
indices2use_j = []

for common_idx in common_indices:
indices2use_i.append(indices_subset_i.index(common_idx))
indices2use_j.append(indices_subset_j.index(common_idx))

A_i = A_i[indices2use_i, :]
A_j = A_j[indices2use_j, :]

fms = tlviz.factor_tools.factor_match_score(
(weights_i, (A_i, B_i, C_i)), (weights_j, (A_j, B_j, C_j)), consider_weights=False
)
replicability_stability_alt[rank].append(fms)

ranks = sorted(replicability_stability_alt.keys())
data = [np.ravel(replicability_stability_alt[r]) for r in ranks]

fig, ax = plt.subplots()
ax.axhline(0.9, linestyle="--", color="gray")
ax.boxplot(data, positions=ranks)
ax.set_xlabel("Number of components")
ax.set_ylabel("Replicability stability")
plt.show()

###############################################################################
# ``common_indices`` contains the indices (e.g. samples) present in both subsets,
# but since the position of each index can change (e.g. sample no 3 is not guaranteeed at
# the third position in all subsets as the first and second sampled might be omitted) we need to

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

type samples

# utilize the indices in the original tensor input.
#
# Simialar results can be also observed here in terms of the replicability of the patterns.
1 change: 1 addition & 0 deletions setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ docs =
tensorly-sphinx-theme
plotly>=4.12
torch
scikit-learn

test =
pytest
Expand Down