Skip to content

Add integration tests for run_experiment_cloud wrapper. #360

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/workflows/actions.yml
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.6, 3.7, 3.8]
python-version: [3.7, 3.8] # TODO(b/196829466): Test Py 3.9 when issue is solved
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
Expand All @@ -24,7 +24,7 @@ jobs:
pip install flake8 pytest mock
- name: Install tensorflow cloud from setup
run: |
pip install src/python/.
pip install --upgrade --use-deprecated=legacy-resolver src/python/.
pip install nbconvert
- name: Lint with flake8
run: |
Expand Down
6 changes: 2 additions & 4 deletions src/python/dependencies.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,11 +24,11 @@ def make_required_install_packages():
"google-cloud-storage",
"keras-tuner",
"tensorboard>=2.3.0",
"tensorflow>=1.15.0,<3.0",
"tensorflow>=1.15.0,<2.6.0",
"tensorflow_datasets",
"tensorflow_transform",
"tf-models-official",
"importlib_resources ; python_version<'3.7'"
"importlib_resources ; python_version<'3.7'",
]


Expand All @@ -39,6 +39,4 @@ def make_required_test_packages():
"mock",
"numpy",
"nbconvert",
"tf-models-official",
"importlib_resources ; python_version<'3.7'"
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
# Lint as: python3
# Copyright 2021 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Integration tests for calling run_experiment_cloud."""

import os
import uuid

import tensorflow as tf
import tensorflow_cloud as tfc
from tensorflow_cloud.core.experimental import models
from tensorflow_cloud.utils import google_api_client
from official.core import task_factory
from official.utils.testing import mock_task

# The staging bucket to use for cloudbuild as well as save the model and data.
_TEST_BUCKET = os.environ["TEST_BUCKET"]
_PROJECT_ID = os.environ["PROJECT_ID"]
_PARENT_IMAGE = "gcr.io/deeplearning-platform-release/tf2-gpu.2-5"
_BASE_PATH = f"gs://{_TEST_BUCKET}/{uuid.uuid4()}"


class RunExperimentCloudTest(tf.test.TestCase):

def setUp(self):
super(RunExperimentCloudTest, self).setUp()
test_data_path = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "../testdata/"
)
self.requirements_txt = os.path.join(test_data_path,
"requirements.txt")

test_config = {
"trainer": {
"checkpoint_interval": 10,
"steps_per_loop": 10,
"summary_interval": 10,
"train_steps": 10,
"validation_steps": 5,
"validation_interval": 10,
"continuous_eval_timeout": 1,
"validation_summary_subdir": "validation",
"optimizer_config": {
"optimizer": {
"type": "sgd",
},
"learning_rate": {
"type": "constant"
}
}
},
}

params = mock_task.mock_experiment()
params.override(test_config, is_strict=False)
self.run_experiment_kwargs = dict(
params=params,
task=task_factory.get_task(params.task),
mode="train_and_eval",
)
self.docker_config = tfc.DockerConfig(
parent_image=_PARENT_IMAGE,
image_build_bucket=_TEST_BUCKET
)

def tpu_strategy(self):
run_kwargs = dict(
chief_config=tfc.COMMON_MACHINE_CONFIGS["CPU"],
worker_count=1,
worker_config=tfc.COMMON_MACHINE_CONFIGS["TPU"],
requirements_txt=self.requirements_txt,
job_labels={
"job": "tpu_strategy",
"team": "run_experiment_cloud_tests",
},
docker_config=self.docker_config,
)
run_experiment_kwargs = dict(
model_dir=os.path.join(_BASE_PATH, "tpu", "saved_model"),
**self.run_experiment_kwargs,
)
return models.run_experiment_cloud(run_experiment_kwargs,
run_kwargs)

def multi_mirror_strategy(self):
run_kwargs = dict(
chief_config=tfc.COMMON_MACHINE_CONFIGS["P100_1X"],
worker_count=1,
worker_config=tfc.COMMON_MACHINE_CONFIGS["P100_1X"],
requirements_txt=self.requirements_txt,
job_labels={
"job": "multi_mirror_strategy",
"team": "run_experiment_cloud_tests",
},
docker_config=self.docker_config,
)
run_experiment_kwargs = dict(
model_dir=os.path.join(_BASE_PATH, "multi_mirror", "saved_model"),
**self.run_experiment_kwargs,
)
return models.run_experiment_cloud(run_experiment_kwargs,
run_kwargs)

def mirror_strategy(self):
run_kwargs = dict(
chief_config=tfc.COMMON_MACHINE_CONFIGS["P100_4X"],
requirements_txt=self.requirements_txt,
job_labels={
"job": "mirror",
"team": "run_experiment_cloud_tests",
},
docker_config=self.docker_config,
)
run_experiment_kwargs = dict(
model_dir=os.path.join(_BASE_PATH, "mirror", "saved_model"),
**self.run_experiment_kwargs,
)
return models.run_experiment_cloud(run_experiment_kwargs,
run_kwargs)

def one_device_strategy(self):
run_kwargs = dict(
requirements_txt=self.requirements_txt,
job_labels={
"job": "one_device",
"team": "run_experiment_cloud_tests",
},
docker_config=self.docker_config,
)
run_experiment_kwargs = dict(
model_dir=os.path.join(_BASE_PATH, "one_device", "saved_model"),
**self.run_experiment_kwargs,
)
# Using the default T4 GPU for this test.
return models.run_experiment_cloud(run_experiment_kwargs,
run_kwargs)

def test_run_experiment_cloud(self):
track_status = {
"one_device_strategy": self.one_device_strategy(),
"mirror_strategy": self.mirror_strategy(),
# TODO(b/148619319) Enable when bug is solved
# "multi_mirror_strategy": self.multi_mirror_strategy(),
# TODO(b/194857231) Enable when bug is solved
# "tpu_strategy": self.tpu_strategy(),
}

for test_name, ret_val in track_status.items():
self.assertTrue(
google_api_client.wait_for_aip_training_job_completion(
ret_val["job_id"], _PROJECT_ID),
"Job {} generated from the test: {} has failed".format(
ret_val["job_id"], test_name))

if __name__ == "__main__":
tf.test.main()
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
tf-models-official