Skip to content

A .net 6 implementation to use Yolov5 and Yolov8 models via the ONNX Runtime

License

Notifications You must be signed in to change notification settings

sstainba/Yolov8.Net

Repository files navigation

Yolov8.Net

https://github.com/sstainba/Yolov8.Net

This is a .NET interface for using Yolov5 and Yolov8 models on the ONNX runtime.

NOTE: If you want to use the GPU, you must have BOTH the CUDA drivers AND CUDNN installed!!!!!! This was tested with cuDNN 9.3 + CUDA 11.8 Loading the model is time consuming, so initial predictions will be slow. Subsequent predictions will be significantly faster.

// Create new Yolov8 predictor, specifying the model (in ONNX format)
// If you are using a custom trained model, you can provide an array of labels. Otherwise, the standard Coco labels are used.
using var yolo = YoloV8Predictor.Create("./assets/yolov8m.onnx");

// Provide an input image.  Image will be resized to model input if needed.
using var image = Image.FromFile("Assets/rufus.jpg");
var predictions = yolo.Predict(image);

// Draw your boxes
using var graphics = Graphics.FromImage(image);
foreach (var pred in predictions)
{
    var originalImageHeight = image.Height;
    var originalImageWidth = image.Width;

    var x = Math.Max(pred.Rectangle.X, 0);
    var y = Math.Max(pred.Rectangle.Y, 0);
    var width = Math.Min(originalImageWidth - x, pred.Rectangle.Width);
    var height = Math.Min(originalImageHeight - y, pred.Rectangle.Height);

    ////////////////////////////////////////////////////////////////////////////////////////////
    // *** Note that the output is already scaled to the original image height and width. ***
    ////////////////////////////////////////////////////////////////////////////////////////////

    // Bounding Box Text
    string text = $"{pred.Label.Name} [{pred.Score}]";

    using (Graphics graphics = Graphics.FromImage(image))
    {
        graphics.CompositingQuality = CompositingQuality.HighQuality;
        graphics.SmoothingMode = SmoothingMode.HighQuality;
        graphics.InterpolationMode = InterpolationMode.HighQualityBicubic;

        // Define Text Options
        Font drawFont = new Font("consolas", 11, FontStyle.Regular);
        SizeF size = graphics.MeasureString(text, drawFont);
        SolidBrush fontBrush = new SolidBrush(Color.Black);
        Point atPoint = new Point((int)x, (int)y - (int)size.Height - 1);

        // Define BoundingBox options
        Pen pen = new Pen(Color.Yellow, 2.0f);
        SolidBrush colorBrush = new SolidBrush(Color.Yellow);

        // Draw text on image 
        graphics.FillRectangle(colorBrush, (int)x, (int)(y - size.Height - 1), (int)size.Width, (int)size.Height);
        graphics.DrawString(text, drawFont, fontBrush, atPoint);

        // Draw bounding box on image
        graphics.DrawRectangle(pen, x, y, width, height);
    }
}

References

https://github.com/ultralytics/yolov8

https://github.com/mentalstack/yolov5-net

About

A .net 6 implementation to use Yolov5 and Yolov8 models via the ONNX Runtime

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages