Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update vectordbs doc,batching-strategy is remove #2550

Merged
merged 1 commit into from
Apr 1, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,6 @@ spring:
index-name: custom-index
dimensions: 1536
similarity: cosine
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
----

The Spring Boot properties starting with `spring.elasticsearch.*` are used to configure the Elasticsearch client:
Expand Down Expand Up @@ -152,7 +151,6 @@ Properties starting with `spring.ai.vectorstore.elasticsearch.*` are used to con
|`spring.ai.vectorstore.elasticsearch.index-name` | The name of the index to store the vectors | `spring-ai-document-index`
|`spring.ai.vectorstore.elasticsearch.dimensions` | The number of dimensions in the vector | `1536`
|`spring.ai.vectorstore.elasticsearch.similarity` | The similarity function to use | `cosine`
|`spring.ai.vectorstore.elasticsearch.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
|===

The following similarity functions are available:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,6 @@ spring:
index-name: custom-index
dimensions: 1536
distance-type: cosine
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
----

The Spring Boot properties starting with `spring.neo4j.*` are used to configure the Neo4j client:
Expand All @@ -123,7 +122,6 @@ Properties starting with `spring.ai.vectorstore.neo4j.*` are used to configure t
|`spring.ai.vectorstore.neo4j.distance-type` | The distance function to use | `cosine`
|`spring.ai.vectorstore.neo4j.label` | The label used for document nodes | `Document`
|`spring.ai.vectorstore.neo4j.embedding-property` | The property name used to store embeddings | `embedding`
|`spring.ai.vectorstore.neo4j.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
|===

The following distance functions are available:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,6 @@ spring:
index-name: spring-ai-document-index
initialize-schema: true
similarity-function: cosinesimil
batching-strategy: TOKEN_COUNT
aws: # Only for Amazon OpenSearch Service
host: <aws opensearch host>
service-name: <aws service name>
Expand All @@ -118,7 +117,6 @@ Properties starting with `spring.ai.vectorstore.opensearch.*` are used to config
|`spring.ai.vectorstore.opensearch.index-name`| Name of the index to store vectors | `spring-ai-document-index`
|`spring.ai.vectorstore.opensearch.initialize-schema`| Whether to initialize the required schema | `false`
|`spring.ai.vectorstore.opensearch.similarity-function`| The similarity function to use | `cosinesimil`
|`spring.ai.vectorstore.opensearch.batching-strategy`| Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
|`spring.ai.vectorstore.opensearch.aws.host`| Hostname of the OpenSearch instance | -
|`spring.ai.vectorstore.opensearch.aws.service-name`| AWS service name | -
|`spring.ai.vectorstore.opensearch.aws.access-key`| AWS access key | -
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,6 @@ spring:
index-type: HNSW
distance-type: COSINE_DISTANCE
dimensions: 1536
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
max-document-batch-size: 10000 # Optional: Maximum number of documents per batch
----

Expand Down Expand Up @@ -147,7 +146,6 @@ You can use the following properties in your Spring Boot configuration to custom
|`spring.ai.vectorstore.pgvector.schema-name` | Vector store schema name | `public`
|`spring.ai.vectorstore.pgvector.table-name` | Vector store table name | `vector_store`
|`spring.ai.vectorstore.pgvector.schema-validation` | Enables schema and table name validation to ensure they are valid and existing objects. | false
|`spring.ai.vectorstore.pgvector.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE`. | TOKEN_COUNT
|`spring.ai.vectorstore.pgvector.max-document-batch-size` | Maximum number of documents to process in a single batch. | 10000

|===
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,6 @@ spring:
collection-name: <collection name>
use-tls: false
initialize-schema: true
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
----

Properties starting with `spring.ai.vectorstore.qdrant.*` are used to configure the `QdrantVectorStore`:
Expand All @@ -99,7 +98,6 @@ Properties starting with `spring.ai.vectorstore.qdrant.*` are used to configure
|`spring.ai.vectorstore.qdrant.collection-name`| The name of the collection to use | `vector_store`
|`spring.ai.vectorstore.qdrant.use-tls`| Whether to use TLS(HTTPS) | `false`
|`spring.ai.vectorstore.qdrant.initialize-schema`| Whether to initialize the schema | `false`
|`spring.ai.vectorstore.qdrant.batching-strategy`| Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
|===

== Manual Configuration
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,6 @@ spring:
initialize-schema: true
index-name: custom-index
prefix: custom-prefix
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
----

Properties starting with `spring.ai.vectorstore.redis.*` are used to configure the `RedisVectorStore`:
Expand All @@ -103,7 +102,6 @@ Properties starting with `spring.ai.vectorstore.redis.*` are used to configure t
|`spring.ai.vectorstore.redis.initialize-schema`| Whether to initialize the required schema | `false`
|`spring.ai.vectorstore.redis.index-name` | The name of the index to store the vectors | `spring-ai-index`
|`spring.ai.vectorstore.redis.prefix` | The prefix for Redis keys | `embedding:`
|`spring.ai.vectorstore.redis.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
|===

== Metadata Filtering
Expand Down
Loading