|
| 1 | +/** |
| 2 | + * Maximum Subarray - λΈλ£¨νΈν¬μ€ (μμ νμ) |
| 3 | + * |
| 4 | + * ν΅μ¬ μμ΄λμ΄: |
| 5 | + * - λͺ¨λ κ°λ₯ν μ°μ λΆλΆ λ°°μ΄μ ν©μ κ³μ°νμ¬ μ΅λκ° μ°ΎκΈ° |
| 6 | + * - iλ²μ§ΈλΆν° jλ²μ§ΈκΉμ§μ ν©μ λμ νλ©΄μ κ³μ° |
| 7 | + * |
| 8 | + * μκ° λ³΅μ‘λ: O(nΒ²) - μ΄μ€ λ°λ³΅λ¬ΈμΌλ‘ λͺ¨λ κ΅¬κ° νμ |
| 9 | + * κ³΅κ° λ³΅μ‘λ: O(1) - λ³μ λͺ κ°λ§ μ¬μ© |
| 10 | + */ |
| 11 | +const maxSubArray = (nums) => { |
| 12 | + const n = nums.length; |
| 13 | + let maxSoFar = nums[0]; |
| 14 | + |
| 15 | + for (let i = 0; i < n; i++) { |
| 16 | + let currentSum = 0; |
| 17 | + for (let j = i; j < n; j++) { |
| 18 | + currentSum += nums[j]; // iλΆν° jκΉμ§μ λμ ν© |
| 19 | + maxSoFar = Math.max(maxSoFar, currentSum); |
| 20 | + } |
| 21 | + } |
| 22 | + |
| 23 | + return maxSoFar; |
| 24 | +}; |
| 25 | + |
| 26 | +/** |
| 27 | + * Maximum Subarray - Kadane's Algorithm |
| 28 | + * |
| 29 | + * ν΅μ¬ μμ΄λμ΄: |
| 30 | + * - κ° μμΉμμ "νμ¬ μ«μλ§μΌλ‘ μλ‘ μμ vs μ΄μ ν©μ νμ¬ μ«μ μΆκ°" μ€ λ ν° κ° μ ν |
| 31 | + * - currentMax = max(νμ¬ μ«μ, μ§κΈκΉμ§ ν© + νμ¬ μ«μ) |
| 32 | + * - μ¦, μ΄μ κΉμ§μ ν©μ΄ νμ¬μ λμμ΄ μ λλ©΄ λ²λ¦¬κ³ μλ‘ μμ |
| 33 | + * |
| 34 | + * μκ° λ³΅μ‘λ: O(n) - λ°°μ΄μ ν λ²λ§ μν |
| 35 | + * κ³΅κ° λ³΅μ‘λ: O(1) - λ³μ λ κ°λ§ μ¬μ© |
| 36 | + */ |
| 37 | +const maxSubArrayKadane = (nums) => { |
| 38 | + let currentMax = nums[0]; // νμ¬ μμΉκΉμ§μ μ΅λ ν© |
| 39 | + let globalMax = nums[0]; // μ 체 μ΅λ ν© |
| 40 | + |
| 41 | + for (let i = 1; i < nums.length; i++) { |
| 42 | + // ν΅μ¬: μ΄μ ν©μ λν μ§ vs μλ‘ μμν μ§ |
| 43 | + currentMax = Math.max(nums[i], currentMax + nums[i]); |
| 44 | + globalMax = Math.max(globalMax, currentMax); |
| 45 | + } |
| 46 | + |
| 47 | + return globalMax; |
| 48 | +}; |
0 commit comments