Skip to content

Latest commit

 

History

History
163 lines (130 loc) · 3.29 KB

File metadata and controls

163 lines (130 loc) · 3.29 KB
comments difficulty edit_url rating source tags
true
Medium
1610
Biweekly Contest 31 Q2
Array
Math
Dynamic Programming
Prefix Sum

中文文档

Description

Given an array of integers arr, return the number of subarrays with an odd sum.

Since the answer can be very large, return it modulo 109 + 7.

 

Example 1:

Input: arr = [1,3,5]
Output: 4
Explanation: All subarrays are [[1],[1,3],[1,3,5],[3],[3,5],[5]]
All sub-arrays sum are [1,4,9,3,8,5].
Odd sums are [1,9,3,5] so the answer is 4.

Example 2:

Input: arr = [2,4,6]
Output: 0
Explanation: All subarrays are [[2],[2,4],[2,4,6],[4],[4,6],[6]]
All sub-arrays sum are [2,6,12,4,10,6].
All sub-arrays have even sum and the answer is 0.

Example 3:

Input: arr = [1,2,3,4,5,6,7]
Output: 16

 

Constraints:

  • 1 <= arr.length <= 105
  • 1 <= arr[i] <= 100

Solutions

Solution 1

Python3

class Solution:
    def numOfSubarrays(self, arr: List[int]) -> int:
        mod = 10**9 + 7
        cnt = [1, 0]
        ans = s = 0
        for x in arr:
            s += x
            ans = (ans + cnt[s & 1 ^ 1]) % mod
            cnt[s & 1] += 1
        return ans

Java

class Solution {
    public int numOfSubarrays(int[] arr) {
        final int mod = (int) 1e9 + 7;
        int[] cnt = {1, 0};
        int ans = 0, s = 0;
        for (int x : arr) {
            s += x;
            ans = (ans + cnt[s & 1 ^ 1]) % mod;
            ++cnt[s & 1];
        }
        return ans;
    }
}

C++

class Solution {
public:
    int numOfSubarrays(vector<int>& arr) {
        const int mod = 1e9 + 7;
        int cnt[2] = {1, 0};
        int ans = 0, s = 0;
        for (int x : arr) {
            s += x;
            ans = (ans + cnt[s & 1 ^ 1]) % mod;
            ++cnt[s & 1];
        }
        return ans;
    }
};

Go

func numOfSubarrays(arr []int) (ans int) {
	const mod int = 1e9 + 7
	cnt := [2]int{1, 0}
	s := 0
	for _, x := range arr {
		s += x
		ans = (ans + cnt[s&1^1]) % mod
		cnt[s&1]++
	}
	return
}

TypeScript

function numOfSubarrays(arr: number[]): number {
    let ans = 0;
    let s = 0;
    const cnt: number[] = [1, 0];
    const mod = 1e9 + 7;
    for (const x of arr) {
        s += x;
        ans = (ans + cnt[(s & 1) ^ 1]) % mod;
        cnt[s & 1]++;
    }
    return ans;
}