Skip to content

Linear interpolation #85925

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jun 18, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 36 additions & 0 deletions library/std/src/f32.rs
Original file line number Diff line number Diff line change
Expand Up @@ -876,4 +876,40 @@ impl f32 {
pub fn atanh(self) -> f32 {
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
}

/// Linear interpolation between `start` and `end`.
///
/// This enables linear interpolation between `start` and `end`, where start is represented by
/// `self == 0.0` and `end` is represented by `self == 1.0`. This is the basis of all
/// "transition", "easing", or "step" functions; if you change `self` from 0.0 to 1.0
/// at a given rate, the result will change from `start` to `end` at a similar rate.
///
/// Values below 0.0 or above 1.0 are allowed, allowing you to extrapolate values outside the
/// range from `start` to `end`. This also is useful for transition functions which might
/// move slightly past the end or start for a desired effect. Mathematically, the values
/// returned are equivalent to `start + self * (end - start)`, although we make a few specific
/// guarantees that are useful specifically to linear interpolation.
///
/// These guarantees are:
///
/// * If `start` and `end` are [finite], the value at 0.0 is always `start` and the
/// value at 1.0 is always `end`. (exactness)
/// * If `start` and `end` are [finite], the values will always move in the direction from
/// `start` to `end` (monotonicity)
/// * If `self` is [finite] and `start == end`, the value at any point will always be
/// `start == end`. (consistency)
///
/// [finite]: #method.is_finite
#[must_use = "method returns a new number and does not mutate the original value"]
#[unstable(feature = "float_interpolation", issue = "86269")]
pub fn lerp(self, start: f32, end: f32) -> f32 {
// consistent
if start == end {
start

// exact/monotonic
} else {
self.mul_add(end, (-self).mul_add(start, start))
}
}
}
63 changes: 63 additions & 0 deletions library/std/src/f32/tests.rs
Original file line number Diff line number Diff line change
Expand Up @@ -757,3 +757,66 @@ fn test_total_cmp() {
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::INFINITY));
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
}

#[test]
fn test_lerp_exact() {
// simple values
assert_eq!(f32::lerp(0.0, 2.0, 4.0), 2.0);
assert_eq!(f32::lerp(1.0, 2.0, 4.0), 4.0);

// boundary values
assert_eq!(f32::lerp(0.0, f32::MIN, f32::MAX), f32::MIN);
assert_eq!(f32::lerp(1.0, f32::MIN, f32::MAX), f32::MAX);
}

#[test]
fn test_lerp_consistent() {
assert_eq!(f32::lerp(f32::MAX, f32::MIN, f32::MIN), f32::MIN);
assert_eq!(f32::lerp(f32::MIN, f32::MAX, f32::MAX), f32::MAX);

// as long as t is finite, a/b can be infinite
assert_eq!(f32::lerp(f32::MAX, f32::NEG_INFINITY, f32::NEG_INFINITY), f32::NEG_INFINITY);
assert_eq!(f32::lerp(f32::MIN, f32::INFINITY, f32::INFINITY), f32::INFINITY);
}

#[test]
fn test_lerp_nan_infinite() {
// non-finite t is not NaN if a/b different
assert!(!f32::lerp(f32::INFINITY, f32::MIN, f32::MAX).is_nan());
assert!(!f32::lerp(f32::NEG_INFINITY, f32::MIN, f32::MAX).is_nan());
}

#[test]
fn test_lerp_values() {
// just a few basic values
assert_eq!(f32::lerp(0.25, 1.0, 2.0), 1.25);
assert_eq!(f32::lerp(0.50, 1.0, 2.0), 1.50);
assert_eq!(f32::lerp(0.75, 1.0, 2.0), 1.75);
}

#[test]
fn test_lerp_monotonic() {
// near 0
let below_zero = f32::lerp(-f32::EPSILON, f32::MIN, f32::MAX);
let zero = f32::lerp(0.0, f32::MIN, f32::MAX);
let above_zero = f32::lerp(f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_zero <= zero);
assert!(zero <= above_zero);
assert!(below_zero <= above_zero);

// near 0.5
let below_half = f32::lerp(0.5 - f32::EPSILON, f32::MIN, f32::MAX);
let half = f32::lerp(0.5, f32::MIN, f32::MAX);
let above_half = f32::lerp(0.5 + f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_half <= half);
assert!(half <= above_half);
assert!(below_half <= above_half);

// near 1
let below_one = f32::lerp(1.0 - f32::EPSILON, f32::MIN, f32::MAX);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This test fails on targets that use Rust's libm

[dependencies]
libm = "0.2"
mod libc {
    extern "C" {
        pub fn fma(x: f64, y: f64, z: f64) -> f64;
    }
}
fn main() {
    let x = -(1.0 - f64::EPSILON);
    println!("{:?}", libm::fma(x, f64::MIN, f64::MIN));
    println!("{:?}", unsafe { libc::fma(x, f64::MIN, f64::MIN) });
}

Notice you get two different results

Not sure if the test failure is a result of a bug in libm or an implementation error in lerp.

let one = f32::lerp(1.0, f32::MIN, f32::MAX);
let above_one = f32::lerp(1.0 + f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_one <= one);
assert!(one <= above_one);
assert!(below_one <= above_one);
}
36 changes: 36 additions & 0 deletions library/std/src/f64.rs
Original file line number Diff line number Diff line change
Expand Up @@ -879,6 +879,42 @@ impl f64 {
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
}

/// Linear interpolation between `start` and `end`.
///
/// This enables linear interpolation between `start` and `end`, where start is represented by
/// `self == 0.0` and `end` is represented by `self == 1.0`. This is the basis of all
/// "transition", "easing", or "step" functions; if you change `self` from 0.0 to 1.0
/// at a given rate, the result will change from `start` to `end` at a similar rate.
///
/// Values below 0.0 or above 1.0 are allowed, allowing you to extrapolate values outside the
/// range from `start` to `end`. This also is useful for transition functions which might
/// move slightly past the end or start for a desired effect. Mathematically, the values
/// returned are equivalent to `start + self * (end - start)`, although we make a few specific
/// guarantees that are useful specifically to linear interpolation.
///
/// These guarantees are:
///
/// * If `start` and `end` are [finite], the value at 0.0 is always `start` and the
/// value at 1.0 is always `end`. (exactness)
/// * If `start` and `end` are [finite], the values will always move in the direction from
/// `start` to `end` (monotonicity)
/// * If `self` is [finite] and `start == end`, the value at any point will always be
/// `start == end`. (consistency)
///
/// [finite]: #method.is_finite
#[must_use = "method returns a new number and does not mutate the original value"]
#[unstable(feature = "float_interpolation", issue = "86269")]
pub fn lerp(self, start: f64, end: f64) -> f64 {
// consistent
if start == end {
start

// exact/monotonic
} else {
self.mul_add(end, (-self).mul_add(start, start))
}
}

// Solaris/Illumos requires a wrapper around log, log2, and log10 functions
// because of their non-standard behavior (e.g., log(-n) returns -Inf instead
// of expected NaN).
Expand Down
55 changes: 55 additions & 0 deletions library/std/src/f64/tests.rs
Original file line number Diff line number Diff line change
Expand Up @@ -753,3 +753,58 @@ fn test_total_cmp() {
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::INFINITY));
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
}

#[test]
fn test_lerp_exact() {
// simple values
assert_eq!(f64::lerp(0.0, 2.0, 4.0), 2.0);
assert_eq!(f64::lerp(1.0, 2.0, 4.0), 4.0);

// boundary values
assert_eq!(f64::lerp(0.0, f64::MIN, f64::MAX), f64::MIN);
assert_eq!(f64::lerp(1.0, f64::MIN, f64::MAX), f64::MAX);
}

#[test]
fn test_lerp_consistent() {
assert_eq!(f64::lerp(f64::MAX, f64::MIN, f64::MIN), f64::MIN);
assert_eq!(f64::lerp(f64::MIN, f64::MAX, f64::MAX), f64::MAX);

// as long as t is finite, a/b can be infinite
assert_eq!(f64::lerp(f64::MAX, f64::NEG_INFINITY, f64::NEG_INFINITY), f64::NEG_INFINITY);
assert_eq!(f64::lerp(f64::MIN, f64::INFINITY, f64::INFINITY), f64::INFINITY);
}

#[test]
fn test_lerp_nan_infinite() {
// non-finite t is not NaN if a/b different
assert!(!f64::lerp(f64::INFINITY, f64::MIN, f64::MAX).is_nan());
assert!(!f64::lerp(f64::NEG_INFINITY, f64::MIN, f64::MAX).is_nan());
}

#[test]
fn test_lerp_values() {
// just a few basic values
assert_eq!(f64::lerp(0.25, 1.0, 2.0), 1.25);
assert_eq!(f64::lerp(0.50, 1.0, 2.0), 1.50);
assert_eq!(f64::lerp(0.75, 1.0, 2.0), 1.75);
}

#[test]
fn test_lerp_monotonic() {
// near 0
let below_zero = f64::lerp(-f64::EPSILON, f64::MIN, f64::MAX);
let zero = f64::lerp(0.0, f64::MIN, f64::MAX);
let above_zero = f64::lerp(f64::EPSILON, f64::MIN, f64::MAX);
assert!(below_zero <= zero);
assert!(zero <= above_zero);
assert!(below_zero <= above_zero);

// near 1
let below_one = f64::lerp(1.0 - f64::EPSILON, f64::MIN, f64::MAX);
let one = f64::lerp(1.0, f64::MIN, f64::MAX);
let above_one = f64::lerp(1.0 + f64::EPSILON, f64::MIN, f64::MAX);
assert!(below_one <= one);
assert!(one <= above_one);
assert!(below_one <= above_one);
}
1 change: 1 addition & 0 deletions library/std/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -268,6 +268,7 @@
#![feature(exhaustive_patterns)]
#![feature(extend_one)]
#![cfg_attr(bootstrap, feature(extended_key_value_attributes))]
#![feature(float_interpolation)]
#![feature(fn_traits)]
#![feature(format_args_nl)]
#![feature(gen_future)]
Expand Down