Skip to content

Linear Algebra for Machine Learning Book Exercises

License

Notifications You must be signed in to change notification settings

rnjv/LinAlgML

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LinAlgML

Desc:

  • Work on book examples to learn foundations of Machine Learning via Jupyter Notebooks.

Worked Examples:

  • C4, Intro to Numpy Arrays
    • C4S1, Numpy N-D Array
    • C4S2 Functions to Arrays
    • C4S3, Combining Arrays
  • C5, Index, Slice, and Reshape Numpy Arrays
    • C5S1, Python List to Arrays
    • C5S2, Array Indexing
    • C5S3, Array Slicing
    • C5S4, Array Reshaping
  • C6 Broadcasting Numpy
  • C7, Vectors and Vector Arithmetic
    • C7S2, Vector Arithmetic
    • C7S4, Vector Dot Product
    • C7S5, Vector Scalar Multiplication
  • C8, Vector Norms
    • C8S2, Vector L1 Norm
    • C8S3, Vector L2 Norm
    • C8S4, Vector MAX Norm
  • C9, Matrices and Matrix Arithmetic
    • C9S2, Define a Matric
    • C9S3, Matrix Arithmetic
    • C9S4, Matrix Multiplication and Division
    • C9S4, Matrix and Matrix Dot Product
    • C9S6, Matrix and Vector Dot Product
    • C9S7, Matrix-Scalar Multiplication
  • C10, Types of Matrices
    • C10S2, Square Matrix
    • C10S3, Symmetric Matrix
    • C10S4, Triangular Matrix
    • C10S5, Diagonal Matrix
    • C10S6, Identity Matrix
    • C10S7, Orthogonal Matrix
  • C11, Matrix Operations
    • C11S2, Transpose
    • C11S3, Inverse
    • C11S4, Trace
    • C11S5, Determinant
    • C11S6, Rank
  • C12, Sparse Matrices
    • C12S2, Sparse Matrix
    • C12S3, Problems with Sparsity (No example)
      • Space Complexity
      • Time Complexity
    • C12S4, Sparse Matricies in ML (No example)
      • Data
      • Data Preperation
    • C12S5, Working with Sparse Matricies (No example)
      • Dictionary of Keys
      • List of Lists
      • Coordinate List
      • Compressed Sparse Row (CSR)
      • Compressed Sparse Column (CSC)
    • C12S6, Sparse Matricies in Python
  • C13, Tensors and Tensor Arithmetic
    • C13S3, Tensors in Python
    • C13S4, Tensor Arithmetic
      • C13S41, Tensor Addition
      • C13S42, Tensor Subtraction
      • C13S43, Tensor Hadmarard Product
      • C13S44, Tensor Division
      • C13S45, Tensor Product
  • C14, Matrix Decompositions
    • C14S3, LU Decomposition
    • C14S4, QR Decomposition
    • C14S5, Cholesky Decomposition
  • C15, Eigendecomposition
    • C15S2, Eigendecomposition of a Matrix (No example)
    • C15S3, Eigenvectors and Eigenvalues
    • C15S4, Calculation of Eigendecomposition
    • C15S5, Confirgm Eigenvector and Eigenvalue
    • C15S6, Reconstruct Matrix
  • C16, Singular Value Decomposition
    • TODO
  • C17, Intro to Multivariate Statistics
  • C18, Principal Component Analysis
  • C19, Linear Regression

Cheatsheet

Setup Development Environment

  1. Install Git https://git-scm.com/downloads

  2. Go into terminal and make dir (assuming current dir home), cd into it

mkdir JupyterProjects
cd JupyterProjects
  1. Pull repo
git clone https://github.com/csalinasonline/LinAlgML.git
  1. Download Anaconda https://www.anaconda.com/

  2. Create a Conda env

conda create -n "blah..." python=3.6
  1. Activate env
conda activate "blah..."
  1. Pip install requirements
pip install -r requirements.txt
  1. Go into Notebooks
cd LinAlgML
cd Notebooks
  1. Try it out!

About

Linear Algebra for Machine Learning Book Exercises

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%