A Streamlit-based application for analyzing and visualizing pollutant degradation kinetics data.
- Simple and intuitive interface for data input
- Pseudo-first-order kinetic model fitting
- Real-time visualization of experimental data and fitted curves
- Basic error analysis (R² and RMSE)
- Support for catalyst loading and light intensity parameters
- Clone the repository:
git clone https://github.com/yourusername/pollutant-degradation-visualizer.git
cd pollutant-degradation-visualizer
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Start the Streamlit application:
streamlit run app.py
-
Open your web browser and navigate to the URL shown in the terminal (typically http://localhost:8501)
-
Enter your experimental parameters:
- Initial concentration (C₀)
- Time-concentration data pairs
- Catalyst loading
- Light intensity
-
View the results:
- Fitted curve plot
- Rate constant (k)
- R² value
- RMSE
- Half-life
The project is structured as follows:
pollutant-degradation-visualizer/
├── app.py # Main Streamlit application
├── requirements.txt # Dependencies
├── README.md # Project documentation
├── src/ # Source code
│ ├── models/ # Kinetic models
│ │ └── first_order.py # First-order model implementation
└── tests/ # Unit tests
└── test_models.py # Tests for kinetic models
Run the test suite:
python -m pytest tests/
Deployed at: pdegrade.streamlit.app
GitHub repository: raymsm/pollutant-degradation-visualizer
For updates or collaboration, contact raymsm.
This project is licensed under the MIT License - see the LICENSE file for details.