Skip to content

🧠 Anamorph - Neural Programming Language with unique signal processing system, built-in security, and enterprise-ready architecture. Features 80 neural commands, Docker sandbox, REST API, and comprehensive monitoring. 98% ready for implementation! 🚀

License

Notifications You must be signed in to change notification settings

quantros/anamorphX

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🧠 AnamorphX - Neural Programming Language & ML IDE

License: MIT Python 3.8+ Development Status Neural Backend

AnamorphX - A revolutionary neural programming language with an integrated ML IDE, featuring automatic PyTorch code generation and real-time neural network analysis.

🌟 Key Features

🧠 Neural Programming Language

  • network - Define neural network architectures
  • neuron - Create individual layers with parameters
  • activation - Specify activation functions (relu, sigmoid, softmax, etc.)
  • optimizer - Configure training optimizers (adam, sgd, etc.)

⚡ Neural Network Backend

  • Automatic PyTorch Generation: Convert AnamorphX networks to PyTorch code
  • Real-time Analysis: Analyze network architectures with recommendations
  • Training Scripts: Auto-generate training and inference scripts
  • Validation: Built-in validation and optimization suggestions

🔧 Integrated ML IDE

  • Syntax Highlighting: Full AnamorphX syntax support
  • Real-time ML Analysis: Code analysis with PyTorch models
  • Debugging: Breakpoints and step-by-step execution
  • Auto-completion: ML-powered code suggestions
  • Neural Visualization: Interactive network architecture display

🏗️ Enterprise Ready

  • Modular Architecture: Clean separation of concerns
  • Plugin System: Extensible with custom components
  • Performance Monitoring: Built-in metrics and profiling
  • Documentation: Auto-generated docs for every model

📝 Recent Updates

  • Added the anamorph_core package to expose lexer, parser and interpreter classes as a single library
  • Introduced a minimal grammar module for validating parser rules
  • Added a dataset loader helper used by training scripts
  • Created example web server programs in examples/web_server.amph

🚀 Quick Start

Example Code

// Define a Convolutional Neural Network
network ImageClassifier {
    neuron ConvLayer1 {
        activation: relu
        filters: 32
        kernel_size: 3
        padding: 1
    }
    
    neuron PoolLayer1 {
        pool_size: 2
        stride: 2
    }
    
    neuron DenseLayer {
        activation: relu
        units: 128
        dropout: 0.5
    }
    
    neuron OutputLayer {
        activation: softmax
        units: 10
    }
    
    optimizer: adam
    learning_rate: 0.001
    loss: categorical_crossentropy
    batch_size: 64
    epochs: 200
}

Generated PyTorch Code

import torch
import torch.nn as nn
import torch.nn.functional as F

class ImageClassifier(nn.Module):
    def __init__(self, input_size=None):
        super(ImageClassifier, self).__init__()
        
        self.convlayer1 = nn.Conv2d(in_channels, 32, kernel_size=3, padding=1)
        self.poollayer1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.denselayer = nn.Linear(input_size, 128)
        self.outputlayer = nn.Linear(128, 10)
        self.dropout_denselayer = nn.Dropout(0.5)
    
    def forward(self, x):
        x = F.relu(self.convlayer1(x))
        x = self.poollayer1(x)
        x = F.relu(self.denselayer(x))
        x = self.dropout_denselayer(x)
        x = F.softmax(self.outputlayer(x), dim=1)
        return x

Installation

# Clone the repository
git clone https://github.com/quantros/anamorphX.git
cd anamorphX

# Create virtual environment
python -m venv venv
source venv/bin/activate  # Linux/Mac
# or
venv\Scripts\activate     # Windows

# Install dependencies
pip install -r requirements.txt

# Launch the ML IDE
python run_full_ml_interpreter_ide.py

Further Documentation

📁 Project Structure

anamorphX/
├── 🎯 full_ml_interpreter_ide.py     # Main ML IDE (3000+ lines)
├── 🚀 run_full_ml_interpreter_ide.py # IDE launcher
├── 📚 src/                           # Source code
│   ├── syntax/                       # Language syntax & AST
│   ├── interpreter/                  # Code interpreter
│   ├── neural_backend/               # Neural Network Backend ✨
│   │   ├── network_parser.py         # Parse network blocks
│   │   ├── pytorch_generator.py      # Generate PyTorch code
│   │   └── neural_translator.py      # Full translation pipeline
│   └── tools/                        # Development tools
├── 🧪 demo/                          # Demonstrations
│   ├── neural_backend_demo.py        # Neural Backend demo
│   └── dev_tools_demo.py             # Development tools demo
├── 📋 examples/                      # Code examples
├── 📁 archive/                       # Project history
└── 🔧 tools/                         # Scripts and utilities

🏗️ Architecture

graph TB
    A[AnamorphX Code] --> B[Network Parser]
    B --> C[Neural Translator]
    C --> D[PyTorch Generator]
    D --> E[Generated Models]
    
    F[ML IDE] --> G[Real-time Analysis]
    G --> H[Syntax Highlighting]
    H --> I[Auto-completion]
    
    J[Interpreter] --> K[Code Execution]
    K --> L[Debugging]
    L --> M[Breakpoints]
Loading

System Components

  • Network Parser: Extracts neural network structures from AnamorphX code
  • PyTorch Generator: Automatically generates PyTorch models and training scripts
  • ML IDE: Full-featured development environment with real-time analysis
  • Interpreter: Executes AnamorphX code with debugging support
  • Neural Visualization: Interactive display of network architectures

📊 Development Progress

Component Completion Status
🧠 Neural Backend 100% ✅ Complete
🎯 ML IDE Integration 100% ✅ Complete
🔤 Language Syntax 95% ✅ Nearly Complete
⚙️ Code Interpreter 85% 🔄 In Progress
🧪 Testing Framework 80% 🔄 In Progress
📚 Documentation 75% 🔄 In Progress
🌐 Web Interface 30% ⏳ Planned

Overall Progress: 85% Complete 🎯

Completed Stages:

  1. Stage 1: Basic project structure (10%)
  2. Stage 2: Syntax and AST (20%)
  3. Stage 3: Interpreter foundation (30%)
  4. Stage 4: ML code analysis (40%)
  5. Stage 5: Interpreter-IDE integration (50%)
  6. Stage 6: Neural Network Backend (60%)
  7. Stage 7: Advanced Features & Optimization (70%)
  8. Stage 8: Extended Commands & Architectures (85%)
  9. 🔄 Stage 9: Complete Command Set & Visual Designer (In Progress)

Current Stage: Complete Command Set & Visual Designer

  • Extended Commands: 25+ new commands implemented (bind, cluster, evolve, etc.)
  • Transformer Support: Full implementation with positional encoding
  • ResNet Architecture: Skip connections and residual blocks
  • Security System: Multi-level data protection and masking
  • ML Validation: Model validation, optimization, and visualization

🔧 IDE Features

Neural Backend Integration

  • 🏗️ Generate PyTorch - Convert AnamorphX networks to PyTorch (Ctrl+Shift+G)
  • 🧠 Neural Analysis - Analyze network architectures (Ctrl+Shift+N)
  • 📊 Real-time Validation - Instant feedback on network definitions
  • 💡 Smart Suggestions - ML-powered recommendations

Code Execution & Debugging

  • ▶️ Run Code - Execute AnamorphX programs (F5)
  • 🐛 Debug Mode - Step-by-step debugging with breakpoints (F9)
  • 🧠 ML Debug - Debug with neural network analysis (Ctrl+Shift+D)
  • 📊 Performance Profiling - Real-time execution metrics

Advanced Features

  • 🔍 Semantic Search - Find code patterns and structures
  • 📝 Auto-completion - Context-aware code suggestions
  • 🎨 Syntax Highlighting - Full AnamorphX language support
  • 📊 Visual Debugging - Interactive execution flow display

🧠 Neural Network Examples

Transformer Architecture

network TransformerModel {
    neuron MultiHeadAttention {
        heads: 8
        d_model: 512
        dropout: 0.1
    }
    
    neuron FeedForward {
        d_ff: 2048
        activation: relu
        dropout: 0.1
    }
    
    neuron PositionalEncoding {
        max_len: 5000
        d_model: 512
    }
    
    layers: 6
    optimizer: adam
    learning_rate: 0.0001
    warmup_steps: 4000
}

Convolutional Neural Network

network CNNClassifier {
    neuron Conv2D_1 {
        filters: 64
        kernel_size: 3
        activation: relu
        padding: same
    }
    
    neuron BatchNorm_1 {
        momentum: 0.99
    }
    
    neuron MaxPool_1 {
        pool_size: 2
        stride: 2
    }
    
    neuron Conv2D_2 {
        filters: 128
        kernel_size: 3
        activation: relu
        padding: same
    }
    
    neuron GlobalAvgPool {
        keepdims: false
    }
    
    neuron Dense_Output {
        units: 10
        activation: softmax
    }
    
    optimizer: adamw
    learning_rate: 0.001
    weight_decay: 0.01
    loss: categorical_crossentropy
}

🚀 Use Cases

🎓 Education

  • Learning Neural Networks: Visual programming approach
  • Research Prototyping: Rapid architecture experimentation
  • Academic Projects: Clean, readable neural network definitions

🏢 Enterprise

  • Model Development: Streamlined ML pipeline creation
  • Team Collaboration: Standardized neural network descriptions
  • Production Deployment: Automatic PyTorch code generation

🔬 Research

  • Architecture Search: Easy experimentation with different designs
  • Ablation Studies: Systematic component testing
  • Reproducibility: Clear, version-controlled model definitions

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

# Clone the repository
git clone https://github.com/quantros/anamorphX.git
cd anamorphX

# Install development dependencies
pip install -r requirements-dev.txt

# Run tests
python -m pytest tests/

# Run the demo
python demo/neural_backend_demo.py

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • PyTorch Team - For the excellent deep learning framework
  • Tkinter Community - For GUI development support
  • Open Source Community - For inspiration and best practices

📞 Contact


AnamorphX - Transforming the way we think about neural network programming. 🧠✨

program ::= statement* statement ::= node_decl | synap_decl | action | control_flow node_decl ::= "neuro" IDENTIFIER synap_decl ::= "synap" IDENTIFIER "->" IDENTIFIER action ::= COMMAND [arguments] arguments ::= "[" arg_list "]" arg_list ::= arg ("," arg)* arg ::= IDENTIFIER ":" value value ::= STRING | NUMBER | IDENTIFIER | boolean control_flow ::= "if" condition "then" statement* ["else" statement*] "end" condition ::= expression expression ::= operand (LOGIC_OP operand)* operand ::= IDENTIFIER | STRING | NUMBER | boolean COMMAND ::= one of the 80 keywords IDENTIFIER ::= /[a-zA-Z_][a-zA-Z0-9_]/ STRING ::= /"([^"\\]|\.)"/ NUMBER ::= /-?\d+(.\d+)?/ boolean ::= "true" | "false" LOGIC_OP ::= "and" | "or" | "not"

Расширенная EBNF-грамматика для Anamorph

program ::= statement*

statement ::= node_decl | synap_decl | action_stmt | control_flow | loop_stmt | func_decl | func_call | comment

node_decl ::= "neuro" IDENTIFIER newline

synap_decl ::= "synap" IDENTIFIER "->" IDENTIFIER newline

action_stmt ::= COMMAND [arguments] newline

arguments ::= "[" arg_list "]"

arg_list ::= arg ("," arg)*

arg ::= IDENTIFIER ":" value

value ::= STRING | NUMBER | IDENTIFIER | boolean

control_flow ::= "if" condition "then" newline statement* ["else" newline statement*] "end" newline

loop_stmt ::= "loop" IDENTIFIER "from" NUMBER "to" NUMBER newline statement* "end" newline

func_decl ::= "func" IDENTIFIER "(" [param_list] ")" newline statement* "end" newline

param_list ::= IDENTIFIER ("," IDENTIFIER)*

func_call ::= IDENTIFIER "(" [arg_call_list] ")" newline

arg_call_list ::= value ("," value)*

condition ::= expression

expression ::= operand (LOGIC_OP operand)*

operand ::= IDENTIFIER | STRING | NUMBER | boolean | "(" expression ")"

COMMAND ::= "neuro" | "synap" | "pulse" | "resonate" | "drift" | "bind" | "echo" | "forge" | "prune" | "filter" | "guard" | "mask" | "scramble" | "trace" | "quanta" | "phase" | "sync" | "async" | "fold" | "unfold" | "pulseX" | "reflect" | "absorb" | "diffuse" | "cluster" | "expand" | "contract" | "encode" | "decode" | "merge" | "split" | "loop" | "halt" | "yield" | "spawn" | "tag" | "query" | "response" | "encrypt" | "decrypt" | "checkpoint" | "rollback" | "pulseIf" | "wait" | "time" | "jump" | "stack" | "pop" | "push" | "flag" | "clearFlag" | "toggle" | "listen" | "broadcast" | "filterIn" | "filterOut" | "auth" | "audit" | "throttle" | "ban" | "whitelist" | "blacklist" | "morph" | "evolve" | "sense" | "act" | "log" | "alert" | "reset" | "pattern" | "train" | "infer" | "scaleUp" | "scaleDown" | "backup" | "restore" | "snapshot" | "migrate" | "notify" | "validate"

IDENTIFIER ::= /[a-zA-Z_][a-zA-Z0-9_]*/

STRING ::= /"([^"\\]|\.)*"/

NUMBER ::= /-?\d+(.\d+)?/

boolean ::= "true" | "false"

LOGIC_OP ::= "and" | "or" | "not"

comment ::= "#" /[^\n]*/ newline

newline ::= "\n" | "\r\n"

statement — любая инструкция, в том числе объявления узлов (neuro), связей (synap), действия, условия, циклы, функции, вызовы функций и комментарии.

Функции (func) — позволяют инкапсулировать повторяющуюся логику с параметрами.

Циклы (loop) — работают по счётчику от X до Y.

Условные конструкции (if ... then ... else ... end) с вложенностью.

Команды — в виде ключевых слов с необязательными аргументами в квадратных скобках.

Аргументы — ключ-значение, где значение может быть строкой, числом, идентификатором или boolean.

Комментарии — строки начинаются с #.

About

🧠 Anamorph - Neural Programming Language with unique signal processing system, built-in security, and enterprise-ready architecture. Features 80 neural commands, Docker sandbox, REST API, and comprehensive monitoring. 98% ready for implementation! 🚀

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages