Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 32 additions & 2 deletions test/scan/test_scan.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,20 +75,25 @@ def run_test(self,
if v is not None else 0, tree_leaves(t)), torch.tensor(0.0))
dupe = lambda v: v.detach().clone().requires_grad_(v.requires_grad)

def _requires_grad(tensors):
return any(tree_flatten(tree_map(lambda v: v.requires_grad, tensors))[0])

# Actual output
init_scan = tree_map(dupe, init)
xs_scan = tree_map(dupe, xs)
final_carry, ys = scan(fn, init_scan, xs_scan, partition_fn=partition_fn)
# Add up all leaves and `backward()` once.
(squish(final_carry) + squish(ys)).backward()
if _requires_grad(final_carry) or _requires_grad(ys):
(squish(final_carry) + squish(ys)).backward()
torch_xla.sync()

# Expected output
init_loop = tree_map(dupe, init)
xs_loop = tree_map(dupe, xs)
expected_final_carry, expected_ys = _loopy_scan(fn, init_loop, xs_loop)
# Add up all leaves and `backward()` once.
(squish(expected_final_carry) + squish(expected_ys)).backward()
if _requires_grad(expected_final_carry) or _requires_grad(expected_ys):
(squish(expected_final_carry) + squish(expected_ys)).backward()
torch_xla.sync()

# Compare values
Expand Down Expand Up @@ -126,6 +131,31 @@ def step_fn(carry, x):
self.compare_pytree(expected_final_carry, final_carry)
self.compare_pytree(expected_ys, ys)

def test_scan_long_tensor(self):
"""This test uses `scan` to implement `torch.cumsum`."""

def step_fn(carry, x):
new_carry = carry + x
y = new_carry
return new_carry, y

init = torch.tensor([0.0, 0.0],
requires_grad=False,
device=self.device,
dtype=torch.long)
xs = torch.tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]],
requires_grad=False,
dtype=torch.long,
device=self.device)
final_carry, ys = self.run_test(step_fn, init, xs)

# Also ensure that our loop-based scan is correct, with manual checks
# that replicate the step_fn.
expected_final_carry = torch.sum(xs, dim=0) + init
expected_ys = torch.cumsum(xs, dim=0)
self.compare_pytree(expected_final_carry, final_carry)
self.compare_pytree(expected_ys, ys)

def test_scan_fn_not_callable(self):
init = torch.tensor([1.0, 1.0], device=self.device)
xs = torch.tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], device=self.device)
Expand Down
15 changes: 11 additions & 4 deletions torch_xla/experimental/scan.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,8 @@ def make_fake_tensor(v: torch.Tensor, requires_grad=True) -> torch.Tensor:
return torch.empty_like(
v, dtype=v.dtype, device=v.device, requires_grad=requires_grad)

fake_carry_pytree = tree_map(make_fake_tensor, init)
fake_carry_pytree = tree_map(
lambda v: make_fake_tensor(v, requires_grad=v.is_floating_point()), init)
fake_x_pytree = tree_map(
lambda v: make_fake_tensor(v[0], requires_grad=v.requires_grad), xs)

Expand Down Expand Up @@ -261,11 +262,15 @@ def fn_no_output_aliasing(*args):
# intermediate activations.
num_out = len(list(tree_iter(out)))
# Capture the backward.
out, unflatten_fwd_out = tree_flatten_none(out)
torch.autograd.backward(out, tree_map(lambda v: torch.ones_like(v), out))
flat_out, unflatten_fwd_out = tree_flatten_none(out)
out_with_grad = list(filter(lambda v: v.requires_grad, flat_out))
if len(out_with_grad) > 0:
torch.autograd.backward(
out_with_grad, tree_map(lambda v: torch.ones_like(v), out_with_grad))

fwd_graph = get_fwd()
bwd_graph = get_bwd()
if len(out_with_grad) > 0:
bwd_graph = get_bwd()

# Figure out which activations are aliases to the inputs. We don't need to
# pass them through the scan logic unchanged. That would use more memory.
Expand Down Expand Up @@ -320,6 +325,8 @@ def alias_input(partial_activations, xs):
return tuple(activations)

def backward(carry, x):
if len(out_with_grad) == 0:
return None, None
grad_new_carry, _ = tree_flatten(carry)
(grad_y, activations) = x
grad_y, _ = tree_flatten_none(grad_y)
Expand Down