Skip to content
This repository was archived by the owner on Aug 7, 2025. It is now read-only.
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
111 changes: 69 additions & 42 deletions ts/torch_handler/request_envelope/kservev2.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
"""
import json
import logging
from typing import Optional

import numpy as np

Expand Down Expand Up @@ -104,24 +105,43 @@ def _from_json(self, body_list):
logger.debug("Bytes array is %s", body_list)

input_names = []
for index, input in enumerate(body_list[0]["inputs"]):
if input["datatype"] == "BYTES":
body_list[0]["inputs"][index]["data"] = input["data"][0]
else:
body_list[0]["inputs"][index]["data"] = (
np.array(input["data"]).reshape(tuple(input["shape"])).tolist()
)
input_names.append(input["name"])
parameters = []
ids = []
input_parameters = []
data_list = []

for body in body_list:
id = body.get("id")
ids.append(id)
params = body.get("parameters")
if params:
parameters.append(params)
inp_names = []
inp_params = []
for i, input in enumerate(body["inputs"]):
params = input.get("parameters")
if params:
inp_params.append(params)
if input["datatype"] == "BYTES":
body["inputs"][i]["data"] = input["data"][0]
else:
body["inputs"][i]["data"] = (
np.array(input["data"]).reshape(tuple(input["shape"])).tolist()
)
inp_names.append(input["name"])
data = body["inputs"] if len(body["inputs"]) > 1 else body["inputs"][0]
data_list.append(data)

input_parameters.append(inp_params)
input_names.append(inp_names)

setattr(self.context, "input_request_id", ids)
setattr(self.context, "input_names", input_names)
logger.debug("Bytes array is %s", body_list)
id = body_list[0].get("id")
if id and id.strip():
setattr(self.context, "input_request_id", body_list[0]["id"])
# TODO: Add parameters support
# parameters = body_list[0].get("parameters")
# if parameters:
# setattr(self.context, "input_parameters", body_list[0]["parameters"])
data_list = [inputs_list.get("inputs") for inputs_list in body_list][0]
setattr(self.context, "request_parameters", parameters)
setattr(self.context, "input_parameters", input_parameters)
logger.debug("Data array is %s", data_list)
logger.debug("Request paraemeters array is %s", parameters)
logger.debug("Input parameters is %s", input_parameters)
return data_list

def format_output(self, data):
Expand All @@ -145,41 +165,48 @@ def format_output(self, data):

"""
logger.debug("The Response of KServe v2 format %s", data)
response = {}
if hasattr(self.context, "input_request_id"):
response["id"] = getattr(self.context, "input_request_id")
delattr(self.context, "input_request_id")
else:
response["id"] = self.context.get_request_id(0)
# TODO: Add parameters support
# if hasattr(self.context, "input_parameters"):
# response["parameters"] = getattr(self.context, "input_parameters")
# delattr(self.context, "input_parameters")
response["model_name"] = self.context.manifest.get("model").get("modelName")
response["model_version"] = self.context.manifest.get("model").get(
"modelVersion"
)
response["outputs"] = self._batch_to_json(data)
return [response]

def _batch_to_json(self, data):
return self._batch_to_json(data)

def _batch_to_json(self, batch: dict):
"""
Splits batch output to json objects
"""
output = []
input_names = getattr(self.context, "input_names")
parameters = getattr(self.context, "request_parameters")
ids = getattr(self.context, "input_request_id")
input_parameters = getattr(self.context, "input_parameters")
responses = []
for index, data in enumerate(batch):
response = {}
response["id"] = ids[index] or self.context.get_request_id(index)
if parameters and parameters[index]:
response["parameters"] = parameters[index]
response["model_name"] = self.context.manifest.get("model").get("modelName")
response["model_version"] = self.context.manifest.get("model").get(
"modelVersion"
)
outputs = []
if isinstance(data, dict):
for key, item in data.items():
outputs.append(self._to_json(item, key, input_parameters))
else:
outputs.append(self._to_json(data, "predictions", input_parameters))
response["outputs"] = outputs
responses.append(response)
delattr(self.context, "input_names")
for index, item in enumerate(data):
output.append(self._to_json(item, input_names[index]))
return output
delattr(self.context, "input_request_id")
delattr(self.context, "input_parameters")
delattr(self.context, "request_parameters")
return responses

def _to_json(self, data, input_name):
def _to_json(self, data, output_name, parameters: Optional[list] = None):
"""
Constructs JSON object from data
"""
output_data = {}
data_ndarray = np.array(data).flatten()
output_data["name"] = input_name
output_data["name"] = output_name
if parameters:
output_data["parameters"] = parameters
output_data["datatype"] = _to_datatype(data_ndarray.dtype)
output_data["data"] = data_ndarray.tolist()
output_data["shape"] = data_ndarray.flatten().shape
Expand Down