Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixing warning after upgrading tagger to use CUDAExecutionprovider instead of CPUExecutionprovider in attempt to improve performance speed. #63

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
onnxruntime
onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
49 changes: 28 additions & 21 deletions wd14tagger.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,14 +38,23 @@
models_dir = get_ext_dir("models", mkdir=True)
known_models = list(config["models"].keys())

log("Available ORT providers: " + ", ".join(ort.get_available_providers()), "DEBUG", True)
log("Using ORT providers: " + ", ".join(defaults["ortProviders"]), "DEBUG", True)
log(f"Available ORT providers: {', '.join(ort.get_available_providers())}", "DEBUG", True)
log(f"Using ORT providers: {', '.join(defaults['ortProviders'])}", "DEBUG", True)

session_options = ort.SessionOptions()
session_options.log_severity_level = 1
session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL

def create_session(model_path):
return ort.InferenceSession(model_path, sess_options=session_options, providers=defaults["ortProviders"])

def get_installed_models():
models = filter(lambda x: x.endswith(".onnx"), os.listdir(models_dir))
models = [m for m in models if os.path.exists(os.path.join(models_dir, os.path.splitext(m)[0] + ".csv"))]
return models

model_path = os.path.join(models_dir, defaults["model"] + ".onnx")
session = create_session(model_path)

async def tag(image, model_name, threshold=0.35, character_threshold=0.85, exclude_tags="", replace_underscore=True, trailing_comma=False, client_id=None, node=None):
if model_name.endswith(".onnx"):
Expand All @@ -57,20 +66,26 @@ async def tag(image, model_name, threshold=0.35, character_threshold=0.85, exclu
name = os.path.join(models_dir, model_name + ".onnx")
model = InferenceSession(name, providers=defaults["ortProviders"])

input = model.get_inputs()[0]
height = input.shape[1]
input_name = model.get_inputs()[0].name
height = model.get_inputs()[0].shape[1]

# Reduce to max size and pad with white
ratio = float(height)/max(image.size)
new_size = tuple([int(x*ratio) for x in image.size])
ratio = float(height) / max(image.size)
new_size = tuple([int(x * ratio) for x in image.size])
image = image.resize(new_size, Image.LANCZOS)
square = Image.new("RGB", (height, height), (255, 255, 255))
square.paste(image, ((height-new_size[0])//2, (height-new_size[1])//2))
square.paste(image, ((height - new_size[0]) // 2, (height - new_size[1]) // 2))

image = np.array(square).astype(np.float32)
image = image[:, :, ::-1] # RGB -> BGR
image = np.expand_dims(image, 0)

# Ensure input data is on GPU
ort_inputs = {input_name: ort.OrtValue.ortvalue_from_numpy(image, 'cuda')}

label_name = model.get_outputs()[0].name
probs = model.run([label_name], ort_inputs)[0]

# Read all tags from csv and locate start of each category
tags = []
general_index = None
Expand All @@ -88,25 +103,20 @@ async def tag(image, model_name, threshold=0.35, character_threshold=0.85, exclu
else:
tags.append(row[1])

label_name = model.get_outputs()[0].name
probs = model.run([label_name], {input.name: image})[0]

result = list(zip(tags, probs[0]))

# rating = max(result[:general_index], key=lambda x: x[1])
general = [item for item in result[general_index:character_index] if item[1] > threshold]
character = [item for item in result[character_index:] if item[1] > character_threshold]

all = character + general
all_tags = character + general
remove = [s.strip() for s in exclude_tags.lower().split(",")]
all = [tag for tag in all if tag[0] not in remove]
all_tags = [tag for tag in all_tags if tag[0] not in remove]

res = ("" if trailing_comma else ", ").join((item[0].replace("(", "\\(").replace(")", "\\)") + (", " if trailing_comma else "") for item in all))
res = ("" if trailing_comma else ", ").join((item[0].replace("(", "\\(").replace(")", "\\)") + (", " if trailing_comma else "") for item in all_tags))

print(res)
return res


async def download_model(model, client_id, node):
hf_endpoint = os.getenv("HF_ENDPOINT", defaults["HF_ENDPOINT"])
if not hf_endpoint.startswith("https://"):
Expand All @@ -127,9 +137,9 @@ async def update_callback(perc):

try:
await download_to_file(
f"{url}model.onnx", os.path.join(models_dir,f"{model}.onnx"), update_callback, session=session)
f"{url}model.onnx", os.path.join(models_dir, f"{model}.onnx"), update_callback, session=session)
await download_to_file(
f"{url}selected_tags.csv", os.path.join(models_dir,f"{model}.csv"), update_callback, session=session)
f"{url}selected_tags.csv", os.path.join(models_dir, f"{model}.csv"), update_callback, session=session)
except aiohttp.client_exceptions.ClientConnectorError as err:
log("Unable to download model. Download files manually or try using a HF mirror/proxy website by setting the environment variable HF_ENDPOINT=https://.....", "ERROR", True)
raise
Expand All @@ -138,7 +148,6 @@ async def update_callback(perc):

return web.Response(status=200)


@PromptServer.instance.routes.get("/pysssss/wd14tagger/tag")
async def get_tags(request):
if "filename" not in request.rel_url.query:
Expand Down Expand Up @@ -166,7 +175,6 @@ async def get_tags(request):

return web.json_response(await tag(image, model, client_id=request.rel_url.query.get("clientId", ""), node=request.rel_url.query.get("node", "")))


class WD14Tagger:
@classmethod
def INPUT_TYPES(s):
Expand All @@ -190,7 +198,7 @@ def INPUT_TYPES(s):
CATEGORY = "image"

def tag(self, image, model, threshold, character_threshold, exclude_tags="", replace_underscore=False, trailing_comma=False):
tensor = image*255
tensor = image * 255
tensor = np.array(tensor, dtype=np.uint8)

pbar = comfy.utils.ProgressBar(tensor.shape[0])
Expand All @@ -201,7 +209,6 @@ def tag(self, image, model, threshold, character_threshold, exclude_tags="", rep
pbar.update(1)
return {"ui": {"tags": tags}, "result": (tags,)}


NODE_CLASS_MAPPINGS = {
"WD14Tagger|pysssss": WD14Tagger,
}
Expand Down