Skip to content

Optimize matmuls involving block diagonal matrices #1493

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 62 additions & 4 deletions pytensor/tensor/rewriting/math.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,11 @@
cast,
constant,
get_underlying_scalar_constant_value,
join,
moveaxis,
ones_like,
register_infer_shape,
split,
switch,
zeros_like,
)
Expand Down Expand Up @@ -99,6 +101,7 @@
)
from pytensor.tensor.rewriting.elemwise import apply_local_dimshuffle_lift
from pytensor.tensor.shape import Shape, Shape_i
from pytensor.tensor.slinalg import BlockDiagonal
from pytensor.tensor.subtensor import Subtensor
from pytensor.tensor.type import (
complex_dtypes,
Expand Down Expand Up @@ -167,6 +170,65 @@ def local_0_dot_x(fgraph, node):
return [constant_zero]


@register_canonicalize
@register_specialize
@register_stabilize
@node_rewriter([Dot])
def local_block_diag_dot_to_dot_block_diag(fgraph, node):
r"""
Perform the rewrite ``dot(block_diag(A, B), C) -> concat(dot(A, C), dot(B, C))``

BlockDiag results in the creation of a matrix of shape ``(n1 * n2, m1 * m2)``. Because dot has complexity
of approximately O(n^3), it's always better to perform two dot products on the smaller matrices, rather than
a single dot on the larger matrix.
"""
x, y = node.inputs
op = node.op

def check_for_block_diag(x):
return x.owner and (
isinstance(x.owner.op, BlockDiagonal)
or isinstance(x.owner.op, Blockwise)
and isinstance(x.owner.op.core_op, BlockDiagonal)
)

if not (check_for_block_diag(x) or check_for_block_diag(y)):
return None

# Case 1: Only one input is BlockDiagonal. In this case, multiply all components of the block-diagonal with the
# non-block diagonal, and return a new block diagonal
if check_for_block_diag(x) and not check_for_block_diag(y):
components = x.owner.inputs
y_splits = split(
y,
splits_size=[component.shape[-1] for component in components],
n_splits=len(components),
)
new_components = [
op(component, y_split) for component, y_split in zip(components, y_splits)
]
new_output = join(0, *new_components)
elif not check_for_block_diag(x) and check_for_block_diag(y):
components = y.owner.inputs
x_splits = split(
x,
splits_size=[component.shape[0] for component in components],
n_splits=len(components),
axis=1,
)

new_components = [
op(x_split, component) for component, x_split in zip(components, x_splits)
]
new_output = join(1, *new_components)

else:
return None

copy_stack_trace(node.outputs[0], new_output)
return [new_output]


@register_canonicalize
@node_rewriter([DimShuffle])
def local_lift_transpose_through_dot(fgraph, node):
Expand Down Expand Up @@ -2496,7 +2558,6 @@ def add_calculate(num, denum, aslist=False, out_type=None):
name="add_canonizer_group",
)


register_canonicalize(local_add_canonizer, "shape_unsafe", name="local_add_canonizer")


Expand Down Expand Up @@ -3619,7 +3680,6 @@ def logmexpm1_to_log1mexp(fgraph, node):
)
register_stabilize(logdiffexp_to_log1mexpdiff, name="logdiffexp_to_log1mexpdiff")


# log(sigmoid(x) / (1 - sigmoid(x))) -> x
# i.e logit(sigmoid(x)) -> x
local_logit_sigmoid = PatternNodeRewriter(
Expand All @@ -3633,7 +3693,6 @@ def logmexpm1_to_log1mexp(fgraph, node):
register_canonicalize(local_logit_sigmoid)
register_specialize(local_logit_sigmoid)


# sigmoid(log(x / (1-x)) -> x
# i.e., sigmoid(logit(x)) -> x
local_sigmoid_logit = PatternNodeRewriter(
Expand Down Expand Up @@ -3674,7 +3733,6 @@ def local_useless_conj(fgraph, node):

register_specialize(local_polygamma_to_tri_gamma)


local_log_kv = PatternNodeRewriter(
# Rewrite log(kv(v, x)) = log(kve(v, x) * exp(-x)) -> log(kve(v, x)) - x
# During stabilize -x is converted to -1.0 * x
Expand Down
78 changes: 78 additions & 0 deletions tests/tensor/rewriting/test_math.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,7 @@
simplify_mul,
)
from pytensor.tensor.shape import Reshape, Shape_i, SpecifyShape, specify_shape
from pytensor.tensor.slinalg import BlockDiagonal
from pytensor.tensor.type import (
TensorType,
cmatrix,
Expand Down Expand Up @@ -4654,3 +4655,80 @@ def test_local_dot_to_mul(batched, a_shape, b_shape):
out.eval({a: a_test, b: b_test}, mode=test_mode),
rewritten_out.eval({a: a_test, b: b_test}, mode=test_mode),
)


@pytest.mark.parametrize("left_multiply", [True, False], ids=["left", "right"])
def test_local_block_diag_dot_to_dot_block_diag(left_multiply):
"""
Test that dot(block_diag(x, y,), z) is rewritten to concat(dot(x, z[:n]), dot(y, z[n:]))
"""
a = tensor("a", shape=(4, 2))
b = tensor("b", shape=(2, 4))
c = tensor("c", shape=(4, 4))
d = tensor("d", shape=(10, 10))

x = pt.linalg.block_diag(a, b, c)

if left_multiply:
out = x @ d
else:
out = d @ x

fn = pytensor.function([a, b, c, d], out)
assert not any(
isinstance(node, BlockDiagonal) for node in fn.maker.fgraph.toposort()
)

fn_expected = pytensor.function(
[a, b, c, d],
out,
mode=get_default_mode().excluding("local_block_diag_dot_to_dot_block_diag"),
)

rng = np.random.default_rng()
a_val = rng.normal(size=a.type.shape).astype(a.type.dtype)
b_val = rng.normal(size=b.type.shape).astype(b.type.dtype)
c_val = rng.normal(size=c.type.shape).astype(c.type.dtype)
d_val = rng.normal(size=d.type.shape).astype(d.type.dtype)

np.testing.assert_allclose(
fn(a_val, b_val, c_val, d_val),
fn_expected(a_val, b_val, c_val, d_val),
atol=1e-6 if config.floatX == "float32" else 1e-12,
rtol=1e-6 if config.floatX == "float32" else 1e-12,
)


@pytest.mark.parametrize("rewrite", [True, False], ids=["rewrite", "no_rewrite"])
@pytest.mark.parametrize("size", [10, 100, 1000], ids=["small", "medium", "large"])
def test_block_diag_dot_to_dot_concat_benchmark(benchmark, size, rewrite):
rng = np.random.default_rng()
a_size = int(rng.uniform(0, size))
b_size = int(rng.uniform(0, size - a_size))
c_size = size - a_size - b_size

a = tensor("a", shape=(a_size, a_size))
b = tensor("b", shape=(b_size, b_size))
c = tensor("c", shape=(c_size, c_size))
d = tensor("d", shape=(size,))

x = pt.linalg.block_diag(a, b, c)
out = x @ d

mode = get_default_mode()
if not rewrite:
mode = mode.excluding("local_block_diag_dot_to_dot_block_diag")
fn = pytensor.function([a, b, c, d], out, mode=mode)

a_val = rng.normal(size=a.type.shape).astype(a.type.dtype)
b_val = rng.normal(size=b.type.shape).astype(b.type.dtype)
c_val = rng.normal(size=c.type.shape).astype(c.type.dtype)
d_val = rng.normal(size=d.type.shape).astype(d.type.dtype)

benchmark(
fn,
a_val,
b_val,
c_val,
d_val,
)
Loading