Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CONTRIBUTERS.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,3 +64,4 @@
* @koffy1
* @deepsourcebot
* @Meaha7
* @vedic-kalra
133 changes: 66 additions & 67 deletions LeetCode/Hard/4. Median of Two Sorted Arrays.cpp
Original file line number Diff line number Diff line change
@@ -1,78 +1,77 @@
// Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
/*Suppose the two arrays are A and B.
Perform the following variant of binary search first in A then B to find the median.

// The overall run time complexity should be O(log (m+n)).
Start from low = 0, high = |A|, guess i = floor (low + high)/2
For the median m, there should be total half = floor (|A| + |B| + 1) / 2 elements not greater than it.
Since there are i + 1 elements not greater than A[i] in A,
There should be half - (i + 1) elements not greater than A[i] in B.
Denote j = half - i - 2, thus we can compare if B[j] <= A[i] <= B[j + 1] is satisfied. This indicates
That the guess is the correct median.

// Example 1:
Otherwise, we can easily tell if the guess is too small or too big, then halve the elements to adjust
the guess.*/

// Input: nums1 = [1,3], nums2 = [2]
// Output: 2.00000
// Explanation: merged array = [1,2,3] and median is 2.
// Example 2:
#define min(x, y) (x < y ? x : y)

// Input: nums1 = [1,2], nums2 = [3,4]
// Output: 2.50000
// Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
int odd(int n) { return n & 0x1; }


void swap(int *x, int *y) {
int tmp = *x; *x = *y; *y = tmp;
}

/* meidan of an array */
double medianof(int A[], int n) {
return odd(n) ? (double) A[n / 2] : (double)(A[ n / 2] + A[n / 2 - 1]) / 2.0;
}

//Approach 1

class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
for(int i=0;i<nums2.size();i++){
nums1.push_back(nums2[i]);
int find(int A[], int m, int B[], int n) {
int l = 0, u = m;
int i, j, half = (m + n + 1) / 2;
if (!A || m == 0)
return medianof(B, n);
if (!B || n == 0)
return medianof(A, m);
while (l < u) {
i = (l + u) / 2;
j = half - i - 2;
if (j < 0 || j >= n) {
if (j == -1 && A[i] <= B[0])
return i; /* found */
if (j >= n )
l = i + 1; /* too small */
else
u = i; /* too big */
} else {
if (B[j]<= A[i] && (j == n - 1 || A[i] <= B[j+1]))
return i; /* found */
else if (A[i] < B[j])
l = i + 1; /* too small */
else
u = i; /* too big */
}
sort(nums1.begin(),nums1.end());
int n=nums1.size();
double res;
if(n&1)
res=nums1[n/2];
else if(!(n&1))
res=(double)(nums1[n/2]+nums1[(n/2)-1])/2;

return res;

}
};

return -1;
}

// Approach 2

class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
if(nums2.size() < nums1.size()) return findMedianSortedArrays(nums2, nums1);
int n1 = nums1.size();
int n2 = nums2.size();
int low = 0, high = n1;

while(low <= high) {
int cut1 = (low+high) >> 1;
int cut2 = (n1 + n2 + 1) / 2 - cut1;


int left1 = cut1 == 0 ? INT_MIN : nums1[cut1-1];
int left2 = cut2 == 0 ? INT_MIN : nums2[cut2-1];

int right1 = cut1 == n1 ? INT_MAX : nums1[cut1];
int right2 = cut2 == n2 ? INT_MAX : nums2[cut2];


if(left1 <= right2 && left2 <= right1) {
if( (n1 + n2) % 2 == 0 )
return (max(left1, left2) + min(right1, right2)) / 2.0;
else
return max(left1, left2);
}
else if(left1 > right2) {
high = cut1 - 1;
}
else {
low = cut1 + 1;
}
}
return 0.0;
double findMedianSortedArrays(int A[], int m, int B[], int n) {
int i, j, k, *C;
if (!A || m == 0)
return medianof(B, n);
if (!B || n == 0)
return medianof(A, m);
if ((i = find(A, m, B, n)) == -1) {
i = find(B, n, A, m);
C = A; A = B; B = C;
swap(&m, &n);
}
};
if (odd(m + n))
return (double)A[i];
j = (m + n) / 2 - i - 2;
if (i == m - 1)
k = B[j+1];
else if (j == n - 1)
k = A[i+1];
else
k = min(A[i+1], B[j+1]);
return (double)(A[i] + k) / 2.0;
}