Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
piexpiex authored Nov 29, 2020
1 parent 710d21b commit c3fc0aa
Show file tree
Hide file tree
Showing 3 changed files with 112 additions and 58 deletions.
66 changes: 42 additions & 24 deletions CFC_configuration/python_scripts/sex_analisis.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@
for k in range(len(fichero)):
if fichero[k]=='/':
midealgo=k
pathtoimages=fichero[0:midealgo-1]
pathtoimages=fichero[0:midealgo]
id_table=open(pathtoimages+'/id.csv')


Expand Down Expand Up @@ -125,7 +125,7 @@
except:
fichero=delete_folder_name(fichero)
name_filter=hdulist[0].header['INSFLNAM']
CAHA_ID=''
CAHA_ID='X'

MJD=hdulist[0].header['MJD-OBS']
try:
Expand Down Expand Up @@ -450,15 +450,15 @@


if len(catalog)<6:
print('Insufficient number of objects for photometric calibration')
if sdss_key==0:
images_table=open('logouts_folder/data_table.csv','a')
images_table.write(fichero[0:len(fichero)-5] +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ 'rejected'+','+ 'No avalaible catalog in this skyfield'+'\n')
images_table.close
if len(catalog)==0:
motivo='no SDSS/APASS coverage'
else:
images_table=open('logouts_folder/data_table.csv','a')
images_table.write(fichero[0:len(fichero)-5] +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ 'rejected'+','+ 'No avalaible catalog in this skyfield'+'\n')
images_table.close
motivo='Not avalaible cross-match catalog in this skyfield'
print('Insufficient number of objects for photometric calibration')
images_table=open('logouts_folder/data_table.csv','a')
images_table.write(fichero[0:len(fichero)-5] +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ 'rejected'+','+ motivo +'\n')
images_table.close

exit()


Expand Down Expand Up @@ -549,7 +549,7 @@
else:
print('No avalaible catalog in this skyfield')
images_table=open('logouts_folder/data_table.csv','a')
images_table.write(fichero[0:len(fichero)-5] +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ 'rejected'+','+ 'No avalaible catalog in this skyfield'+'\n')
images_table.write(fichero[0:len(fichero)-5] +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ 'rejected'+','+ 'No SDSS/APASS coverage'+'\n')
images_table.close
exit()

Expand Down Expand Up @@ -776,11 +776,19 @@
extrapolation_mag[i]='C'
elif calibration_mag[i]<min_pmag:
extrapolation_mag[i]='B'
c1 = fits.Column(name='Image_identifier', array=np.array(len(final_objects[:,0])*['CAHA_CAFOS_BBI_DR1_'+str(CAHA_ID[0])]), format='50A')

if CAHA_ID=='X':
c1 = fits.Column(name='Image_identifier', array=np.array(len(final_objects[:,0])*['CAHA_CAFOS_BBI_DR1']), format='50A')
else:
c1 = fits.Column(name='Image_identifier', array=np.array(len(final_objects[:,0])*['CAHA_CAFOS_BBI_DR1_'+str(CAHA_ID[0])]), format='50A')
NUMBER_ID=np.arange(1,1+len(final_objects[:,0]),1).astype(np.str)
DETECTION_ID=np.array(len(NUMBER_ID)*['CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_0000'])
for j in range(len(NUMBER_ID)):
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(1+j)))+NUMBER_ID[j]
if CAHA_ID=='X':
for j in range(len(NUMBER_ID)):
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+'0'*(3-int(np.log10(1+j)))+NUMBER_ID[j]
else:
for j in range(len(NUMBER_ID)):
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(1+j)))+NUMBER_ID[j]
c2 = fits.Column(name='Detection_ID', array=DETECTION_ID, format='50A')
c3 = fits.Column(name='MJD', array=np.array(len(final_objects[:,0])*[str(MJD)]), format='12A')
c4 = fits.Column(name='SNR_WIN',array=final_objects[:,SNR_WIN], format='E')
Expand Down Expand Up @@ -818,19 +826,29 @@
votable1.write('catalogs_folder/CFC_catalogs/'+fichero[0:len(fichero)-5]+'_catalog.xml',table_id='table_id',format='votable',overwrite=True)




c1 = fits.Column(name='Image_identifier', array=np.array(len(total_objects[:,0])*['CAHA_CAFOS_BBI_DR1_'+str(CAHA_ID[0])]), format='50A')
if CAHA_ID=='X':
c1 = fits.Column(name='Image_identifier', array=np.array(len(final_objects[:,0])*['CAHA_CAFOS_BBI_DR1']), format='50A')
else:
c1 = fits.Column(name='Image_identifier', array=np.array(len(total_objects[:,0])*['CAHA_CAFOS_BBI_DR1_'+str(CAHA_ID[0])]), format='50A')
DETECTION_ID=np.array(len(total_objects)*['CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_0000'])
contador_A=1+len(final_objects)
contador_B=1
for j in range(len(total_objects)):
if listaok[j]!=1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(contador_A)))+str(contador_A)
contador_A=contador_A+1
if listaok[j]==1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(contador_B)))+str(contador_B)
contador_B=contador_B+1
if CAHA_ID=='X':
for j in range(len(total_objects)):
if listaok[j]!=1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+'0'*(3-int(np.log10(contador_A)))+str(contador_A)
contador_A=contador_A+1
if listaok[j]==1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+'0'*(3-int(np.log10(contador_B)))+str(contador_B)
contador_B=contador_B+1
else:
for j in range(len(total_objects)):
if listaok[j]!=1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(contador_A)))+str(contador_A)
contador_A=contador_A+1
if listaok[j]==1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(contador_B)))+str(contador_B)
contador_B=contador_B+1
c2 = fits.Column(name='Detection_ID', array=DETECTION_ID, format='50A')
c3 = fits.Column(name='MJD', array=np.array(len(total_objects[:,0])*[str(MJD)]), format='12A')
c4 = fits.Column(name='SNR_WIN',array=total_objects[:,SNR_WIN], format='E')
Expand Down
67 changes: 44 additions & 23 deletions CFC_configuration/python_scripts/sex_analisis_saved.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,8 +89,9 @@
for k in range(len(fichero)):
if fichero[k]=='/':
midealgo=k
pathtoimages=fichero[0:midealgo-1]
pathtoimages=fichero[0:midealgo]
id_table=open(pathtoimages+'/id.csv')



lista=[]
Expand Down Expand Up @@ -126,7 +127,7 @@
except:
fichero=delete_folder_name(fichero)
name_filter=hdulist[0].header['INSFLNAM']
CAHA_ID=''
CAHA_ID='X'

MJD=hdulist[0].header['MJD-OBS']
try:
Expand Down Expand Up @@ -447,15 +448,15 @@


if len(catalog)<6:
print('Insufficient number of objects for photometric calibration')
if sdss_key==0:
images_table=open('logouts_folder/data_table.csv','a')
images_table.write(fichero[0:len(fichero)-5] +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ 'rejected'+','+ 'No avalaible catalog in this skyfield'+'\n')
images_table.close
if len(catalog)==0:
motivo='no SDSS/APASS coverage'
else:
images_table=open('logouts_folder/data_table.csv','a')
images_table.write(fichero[0:len(fichero)-5] +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ 'rejected'+','+ 'No avalaible catalog in this skyfield'+'\n')
images_table.close
motivo='Not avalaible cross-match catalog in this skyfield'
print('Insufficient number of objects for photometric calibration')
images_table=open('logouts_folder/data_table.csv','a')
images_table.write(fichero[0:len(fichero)-5] +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ 'rejected'+','+ motivo +'\n')
images_table.close

exit()

#Columns selection
Expand Down Expand Up @@ -544,7 +545,7 @@
else:
print('No avalaible catalog in this skyfield')
images_table=open('logouts_folder/data_table.csv','a')
images_table.write(fichero[0:len(fichero)-5] +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ 'rejected'+','+ 'No avalaible catalog in this skyfield'+'\n')
images_table.write(fichero[0:len(fichero)-5] +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ ' ' +','+ 'rejected'+','+ 'No SDSS/APASS coverage'+'\n')
images_table.close
exit()

Expand Down Expand Up @@ -770,11 +771,20 @@
extrapolation_mag[i]='C'
elif calibration_mag[i]<min_pmag:
extrapolation_mag[i]='B'
c1 = fits.Column(name='Image_identifier', array=np.array(len(final_objects[:,0])*['CAHA_CAFOS_BBI_DR1_'+str(CAHA_ID[0])]), format='50A')
if CAHA_ID=='X':
c1 = fits.Column(name='Image_identifier', array=np.array(len(final_objects[:,0])*['CAHA_CAFOS_BBI_DR1']), format='50A')
else:
c1 = fits.Column(name='Image_identifier', array=np.array(len(final_objects[:,0])*['CAHA_CAFOS_BBI_DR1_'+str(CAHA_ID[0])]), format='50A')


NUMBER_ID=np.arange(1,1+len(final_objects[:,0]),1).astype(np.str)
DETECTION_ID=np.array(len(NUMBER_ID)*['CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_0000'])
for j in range(len(NUMBER_ID)):
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(1+j)))+NUMBER_ID[j]
if CAHA_ID=='X':
for j in range(len(NUMBER_ID)):
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+'0'*(3-int(np.log10(1+j)))+NUMBER_ID[j]
else:
for j in range(len(NUMBER_ID)):
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(1+j)))+NUMBER_ID[j]
c2 = fits.Column(name='Detection_ID', array=DETECTION_ID, format='50A')
c3 = fits.Column(name='MJD', array=np.array(len(final_objects[:,0])*[str(MJD)]), format='12A')
c4 = fits.Column(name='SNR_WIN',array=final_objects[:,SNR_WIN], format='E')
Expand Down Expand Up @@ -813,18 +823,29 @@




c1 = fits.Column(name='Image_identifier', array=np.array(len(total_objects[:,0])*['CAHA_CAFOS_BBI_DR1_'+str(CAHA_ID[0])]), format='50A')
if CAHA_ID=='X':
c1 = fits.Column(name='Image_identifier', array=np.array(len(final_objects[:,0])*['CAHA_CAFOS_BBI_DR1']), format='50A')
else:
c1 = fits.Column(name='Image_identifier', array=np.array(len(total_objects[:,0])*['CAHA_CAFOS_BBI_DR1_'+str(CAHA_ID[0])]), format='50A')
DETECTION_ID=np.array(len(total_objects)*['CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_0000'])
contador_A=1+len(final_objects)
contador_B=1
for j in range(len(total_objects)):
if listaok[j]!=1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(contador_A)))+str(contador_A)
contador_A=contador_A+1
if listaok[j]==1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(contador_B)))+str(contador_B)
contador_B=contador_B+1
if CAHA_ID=='X':
for j in range(len(total_objects)):
if listaok[j]!=1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+'0'*(3-int(np.log10(contador_A)))+str(contador_A)
contador_A=contador_A+1
if listaok[j]==1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+'0'*(3-int(np.log10(contador_B)))+str(contador_B)
contador_B=contador_B+1
else:
for j in range(len(total_objects)):
if listaok[j]!=1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(contador_A)))+str(contador_A)
contador_A=contador_A+1
if listaok[j]==1:
DETECTION_ID[j]='CAHA_CAFOS_BBI_DR1_'+CAHA_ID[0]+'_'+'0'*(3-int(np.log10(contador_B)))+str(contador_B)
contador_B=contador_B+1
c2 = fits.Column(name='Detection_ID', array=DETECTION_ID, format='50A')
c3 = fits.Column(name='MJD', array=np.array(len(total_objects[:,0])*[str(MJD)]), format='12A')
c4 = fits.Column(name='SNR_WIN',array=total_objects[:,SNR_WIN], format='E')
Expand Down
37 changes: 26 additions & 11 deletions CFC_configuration/python_scripts/sigma_c.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,23 +2,38 @@
import numpy as np

def ajuste_lineal(X,Y,W=0):
W=np.array([W])
#ajuste lineal por minimos cuadrados de los puntos con coordenadas X e Y con pesos W
if W==0:
if len(W)==1:
W=W[0]
n=len(X)
x=sum(X)
y=sum(Y)
xy=sum(X*Y)
x_2=sum(X*X)
A=(n*xy-x*y)/(n*x_2-x*x)
B=(y-A*x)/n
#B=(x_2*y-x*xy)/(n*x_2-x*x) #desarrollado
rest=(Y-B-A*X)
sigma=(sum((Y-A*X-B)**2)/(n-2))**0.5
d_A=sigma*(n/(n*x_2-x**2))**0.5
d_B=d_A*(x_2/n)**0.5
r=sum((X-np.mean(X))*(Y-np.mean(Y)))/sum((X-np.mean(X))**2)**0.5/sum((Y-np.mean(Y))**2)**0.5
r_2=r**2
R_2=1- (sum((rest-n*np.mean(rest))**2)/(n-1))/(sum((Y-n*np.mean(Y))**2)/(n-1))
div=n*x_2-x*x
if div==0:
A=0
B=0
d_A=0
d_B=0
r=0
r_2=0
R_2=0
sigma=0
else:
A=(n*xy-x*y)/div
#A=(n*xy-x*y)/(n*x_2-x*x)
B=(y-A*x)/n
#B=(x_2*y-x*xy)/(n*x_2-x*x) #desarrollado
rest=(Y-B-A*X)
sigma=(sum((Y-A*X-B)**2)/(n-2))**0.5
d_A=sigma*(n/div)**0.5
#d_A=sigma*(n/(n*x_2-x**2))**0.5
d_B=d_A*(x_2/n)**0.5
r=sum((X-np.mean(X))*(Y-np.mean(Y)))/sum((X-np.mean(X))**2)**0.5/sum((Y-np.mean(Y))**2)**0.5
r_2=r**2
R_2=1- (sum((rest-n*np.mean(rest))**2)/(n-1))/(sum((Y-n*np.mean(Y))**2)/(n-1))
else:
n=len(X)
N=sum(W)
Expand Down

0 comments on commit c3fc0aa

Please sign in to comment.