Skip to content

Commit

Permalink
AbstractGaussNewton now supports reverse-autodiff for Jacobians.
Browse files Browse the repository at this point in the history
In particular this is useful when the underlying function only supports reverse-mode autodifferentiation due to a `jax.custom_vjp`, see #50
  • Loading branch information
patrick-kidger committed Mar 30, 2024
1 parent 4d78561 commit 7768204
Show file tree
Hide file tree
Showing 4 changed files with 83 additions and 6 deletions.
7 changes: 7 additions & 0 deletions optimistix/_solver/dogleg.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,13 @@ class Dogleg(AbstractGaussNewton[Y, Out, Aux], strict=True):
The distinguishing feature of this algorithm is the "dog leg" shape of its descent
path, in which it begins by moving in the steepest descent direction, and then
switches to moving in the Newton direction.
Supports the following `options`:
- `jac`: whether to use forward- or reverse-mode autodifferentiation to compute the
Jacobian. Can be either `"fwd"` or `"bwd"`. Defaults to `"fwd"`, which is
usually more efficient. Changing this can be useful when the target function has
a `jax.custom_vjp`, and so does not support forward-mode autodifferentiation.
"""

rtol: float
Expand Down
46 changes: 40 additions & 6 deletions optimistix/_solver/gauss_newton.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from collections.abc import Callable
from typing import Any, Generic, Optional, Union
from typing import Any, Generic, Literal, Optional, Union

import equinox as eqx
import jax
Expand Down Expand Up @@ -164,10 +164,28 @@ class _GaussNewtonState(


def _make_f_info(
fn: Callable[[Y, Args], tuple[Any, Aux]], y: Y, args: Args, tags: frozenset
fn: Callable[[Y, Args], tuple[Any, Aux]],
y: Y,
args: Args,
tags: frozenset,
jac: Literal["fwd", "bwd"],
) -> tuple[FunctionInfo.ResidualJac, Aux]:
f_eval, lin_fn, aux_eval = jax.linearize(lambda _y: fn(_y, args), y, has_aux=True)
jac_eval = lx.FunctionLinearOperator(lin_fn, jax.eval_shape(lambda: y), tags)
if jac == "fwd":
f_eval, lin_fn, aux_eval = jax.linearize(
lambda _y: fn(_y, args), y, has_aux=True
)
jac_eval = lx.FunctionLinearOperator(lin_fn, jax.eval_shape(lambda: y), tags)
elif jac == "bwd":
# Materialise the Jacobian in this case.
def _for_jacrev(_y):
f_eval, aux_eval = fn(_y, args)
return f_eval, (f_eval, aux_eval)

jac_pytree, (f_eval, aux_eval) = jax.jacrev(_for_jacrev, has_aux=True)(y)
output_structure = jax.eval_shape(lambda: f_eval)
jac_eval = lx.PyTreeLinearOperator(jac_pytree, output_structure, tags)
else:
raise ValueError("Only `jac='fwd'` or `jac='bwd'` are valid.")
return FunctionInfo.ResidualJac(f_eval, jac_eval), aux_eval


Expand All @@ -187,6 +205,13 @@ class AbstractGaussNewton(
- `descent`: `AbstractDescent`
- `search`: `AbstractSearch`
- `verbose`: `frozenset[str]`
Supports the following `options`:
- `jac`: whether to use forward- or reverse-mode autodifferentiation to compute the
Jacobian. Can be either `"fwd"` or `"bwd"`. Defaults to `"fwd"`, which is
usually more efficient. Changing this can be useful when the target function has
a `jax.custom_vjp`, and so does not support forward-mode autodifferentiation.
"""

rtol: AbstractVar[float]
Expand All @@ -208,7 +233,8 @@ def init(
aux_struct: PyTree[jax.ShapeDtypeStruct],
tags: frozenset[object],
) -> _GaussNewtonState:
f_info_struct, _ = eqx.filter_eval_shape(_make_f_info, fn, y, args, tags)
jac = options.get("jac", "fwd")
f_info_struct, _ = eqx.filter_eval_shape(_make_f_info, fn, y, args, tags, jac)
f_info = tree_full_like(f_info_struct, 0, allow_static=True)
return _GaussNewtonState(
first_step=jnp.array(True),
Expand All @@ -233,7 +259,8 @@ def step(
state: _GaussNewtonState,
tags: frozenset[object],
) -> tuple[Y, _GaussNewtonState, Aux]:
f_eval_info, aux_eval = _make_f_info(fn, state.y_eval, args, tags)
jac = options.get("jac", "fwd")
f_eval_info, aux_eval = _make_f_info(fn, state.y_eval, args, tags, jac)
# We have a jaxpr in `f_info.jac`, which are compared by identity. Here we
# arrange to use the same one so that downstream equality checks (e.g. in the
# `filter_cond` below)
Expand Down Expand Up @@ -360,6 +387,13 @@ class GaussNewton(AbstractGaussNewton[Y, Out, Aux], strict=True):
Note that regularised approaches like [`optimistix.LevenbergMarquardt`][] are
usually preferred instead.
Supports the following `options`:
- `jac`: whether to use forward- or reverse-mode autodifferentiation to compute the
Jacobian. Can be either `"fwd"` or `"bwd"`. Defaults to `"fwd"`, which is
usually more efficient. Changing this can be useful when the target function has
a `jax.custom_vjp`, and so does not support forward-mode autodifferentiation.
"""

rtol: float
Expand Down
14 changes: 14 additions & 0 deletions optimistix/_solver/levenberg_marquardt.py
Original file line number Diff line number Diff line change
Expand Up @@ -264,6 +264,13 @@ class LevenbergMarquardt(AbstractGaussNewton[Y, Out, Aux], strict=True):
region around the current point.
This is a good algorithm for many least squares problems.
Supports the following `options`:
- `jac`: whether to use forward- or reverse-mode autodifferentiation to compute the
Jacobian. Can be either `"fwd"` or `"bwd"`. Defaults to `"fwd"`, which is
usually more efficient. Changing this can be useful when the target function has
a `jax.custom_vjp`, and so does not support forward-mode autodifferentiation.
"""

rtol: float
Expand Down Expand Up @@ -316,6 +323,13 @@ class IndirectLevenbergMarquardt(AbstractGaussNewton[Y, Out, Aux], strict=True):
Generally speaking [`optimistix.LevenbergMarquardt`][] is preferred, as it performs
nearly the same algorithm, without the computational overhead of an extra (scalar)
nonlinear solve.
Supports the following `options`:
- `jac`: whether to use forward- or reverse-mode autodifferentiation to compute the
Jacobian. Can be either `"fwd"` or `"bwd"`. Defaults to `"fwd"`, which is
usually more efficient. Changing this can be useful when the target function has
a `jax.custom_vjp`, and so does not support forward-mode autodifferentiation.
"""

rtol: float
Expand Down
22 changes: 22 additions & 0 deletions tests/test_least_squares.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,3 +127,25 @@ def least_squares(x, dynamic_args, *, adjoint):
# assert tree_allclose(out2, expected_out, atol=atol, rtol=rtol)
# assert tree_allclose(t_expected_out2, t_expected_out, atol=atol, rtol=rtol)
# assert tree_allclose(t_out2, t_expected_out, atol=atol, rtol=rtol)


def test_gauss_newton_jacrev():
@jax.custom_vjp
def f(y, _):
return dict(bar=y["foo"] ** 2)

def f_fwd(y, _):
return f(y, None), jnp.sign(y["foo"])

def f_bwd(sign, g):
return dict(foo=sign * g["bar"]), None

f.defvjp(f_fwd, f_bwd)

solver = optx.LevenbergMarquardt(rtol=1e-8, atol=1e-8)
y0 = dict(foo=jnp.arange(3.0))
out = optx.least_squares(f, solver, y0, options=dict(jac="bwd"), max_steps=512)
assert tree_allclose(out.value, dict(foo=jnp.zeros(3)), rtol=1e-3, atol=1e-2)

with pytest.raises(TypeError, match="forward-mode autodiff"):
optx.least_squares(f, solver, y0, options=dict(jac="fwd"), max_steps=512)

0 comments on commit 7768204

Please sign in to comment.