Skip to content

ouazmourad/MarketOps_DBorse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MarketOps Copilot (WIP)

Time-aware, table-literate, verifiable RAG app. Single-command local run via Streamlit + FAISS + Transformers.

Core features (MVP):

  • Document ingestion from data/samples (PDF, TXT, MD).
  • Vector search (Sentence-Transformers) + context-constrained answers (FLAN-T5).
  • Topic tagging (zero-shot) and optional FinBERT sentiment.
  • Table extraction from PDFs and Table QA with TAPAS (cell coordinates returned).
  • Simple numeric self-check widget (sum/avg over cited table columns).

This is a lightweight, on-device-friendly version. It avoids external APIs by default.


Quickstart

1) Clone / unzip and install

# (Option A) Local venv
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt
python -c "import nltk; import ssl; ssl._create_default_https_context = ssl._create_unverified_context; import nltk; nltk.download('punkt'); nltk.download('stopwords')" || true

First run will download small models (embeddings, FLAN-T5, TAPAS).

2) Run

streamlit run streamlit_app.py

Open the URL shown (default: http://localhost:8501).

3) Docker (optional)

docker build -t marketops-copilot .
docker run --rm -p 8501:8501 -v $PWD/data:/app/data marketops-copilot

4) Project structure

marketops-copilot/
├─ streamlit_app.py
├─ app/
│  ├─ core/
│  │  ├─ rag.py
│  │  ├─ table_qa.py
│  │  ├─ classify.py
│  │  └─ verify.py
│  └─ ingest/
│     └─ pdf_parse.py
├─ data/
│  └─ samples/ # (placeholders)
│     ├─ notice_example.txt
│     ├─ fees_table.pdf            
│     └─ listing_rules_excerpt.md
├─ requirements.txt
├─ Dockerfile
├─ .gitignore
└─ README.md

5) Add your own docs Drop PDFs / TXTs into data/samples and click Ingest in the left sidebar.


Notes

  • If you have trouble with camelot, use basic PDF text via pdfplumber.
  • TAPAS expects tabular data. If your PDFs have embedded tables, extraction quality varies by file.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published