Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add shoot growth simulation #68

Draft
wants to merge 19 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
471 changes: 471 additions & 0 deletions example/Simulation.ipynb

Large diffs are not rendered by default.

7,047 changes: 7,047 additions & 0 deletions example/simul.ipynb

Large diffs are not rendered by default.

13,132 changes: 13,132 additions & 0 deletions example/tutorials/simulation.ipynb

Large diffs are not rendered by default.

364 changes: 364 additions & 0 deletions example/weather.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,364 @@
meteo<- read.csv(file = "C:\\Users\\mlabadie\\Documents\\GitHub\\strawberry\\share\\data\\meteo\\meteo_douville.csv",header= TRUE,sep= ";",na.string="",dec=",")

install.packages(pkgs = c("plyr","dplyr","reshape","ggplot2","rmarkdown","knitr","scales","mice","VIM","imputeTS"))

library(plyr)
library(dplyr)
library(reshape)
library(ggplot2)
library(rmarkdown)
library(knitr)
library(scales)
library(mice)
library(VIM)
library(imputeTS)

fc_summary.data<-function(data,varname, index.variable){
if (length(x = index.variable)==1){
if (length(x = varname)==1){
dat<- do.call(data.frame,aggregate(x =data[varname],
by=list(data[,index.variable[1]]),
function(x)c(mean=mean(x,na.rm = T),
sd=sd(x,na.rm = T)
)
))

colnames(dat)<-c(index.variable,
paste(varname,".mean",sep = ""),
paste(varname,".sd",sep = ""))
}else
dat<- do.call(data.frame,aggregate(x =data[varname],
by=list(data[,index.variable[1]]),
function(x)c(mean=mean(x,na.rm = T),
sd=sd(x,na.rm = T)
)
))

}else if(length(x = index.variable)==2){
if (length(x = varname)==1){
dat<- do.call(data.frame,aggregate(x =data[varname],
by=list(data[,index.variable[1]],data[,index.variable[2]]),
function(x)c(mean=mean(x,na.rm = T),
sd=sd(x,na.rm = T)
)
))

colnames(dat)<-c(index.variable,
paste(varname,".mean",sep = ""),
paste(varname,".sd",sep = ""))
}else
dat<- do.call(data.frame,aggregate(x =data[varname],
by=list(data[,index.variable[1]],
data[,index.variable[2]]),
function(x)c(mean=mean(x,na.rm = T),
sd=sd(x,na.rm = T)
)
))

} else if (length(x = index.variable)==3){
if (length(x = varname)==1){
dat<- do.call(data.frame,aggregate(x =data[varname],
by=list(data[,index.variable[1]],
data[,index.variable[2]],
data[,index.variable[3]]),
function(x)c(mean=mean(x,na.rm = T),
sd=sd(x,na.rm = T)
)
))

colnames(dat)<-c(index.variable,
paste(varname,".mean",sep = ""),
paste(varname,".sd",sep = ""))
}else
dat<- do.call(data.frame,aggregate(x =data[varname],
by=list(data[,index.variable[1]],
data[,index.variable[2]],
data[,index.variable[3]]),
function(x)c(mean=mean(x,na.rm = T),
sd=sd(x,na.rm = T)
)
))

}else if (length(x = index.variable)==4){
if (length(x = varname)==1){
dat<- do.call(data.frame,aggregate(x =data[varname],
by=list(data[,index.variable[1]],
data[,index.variable[2]],
data[,index.variable[3]],
data[,index.variable[4]]),
function(x)c(mean=mean(x,na.rm = T),
sd=sd(x,na.rm = T)
)
))

colnames(dat)<-c(index.variable,
paste(varname,".mean",sep = ""),
paste(varname,".sd",sep = ""))
}else
dat<- do.call(data.frame,aggregate(x =data[varname],
by=list(data[,index.variable[1]],
data[,index.variable[2]],
data[,index.variable[3]],
data[,index.variable[4]]),
function(x)c(mean=mean(x,na.rm = T),
sd=sd(x,na.rm = T)
)
))
}else

print("You have too much factor")



names(dat)[match("Group.1",names(dat))] <- index.variable[1]
names(dat)[match("Group.2",names(dat))] <- index.variable[2]
names(dat)[match("Group.3",names(dat))] <- index.variable[3]
names(dat)[match("Group.4",names(dat))] <- index.variable[4]
return(dat)
}

index.variable<- "Date"

time.variable <- c("Date",
"Heure")

numeric.variable<- c("Temp_amb",
"Hygro","Temp_sol","Ray_ext")

dat.summary<-fc_summary.data(data = meteo,varname = numeric.variable,index.variable = index.variable)

fc_plot.summary.data <- function(data,Sd,idx.variable,modality,design,color,linetype){

idx.variable <- idx.variable

# Creation of empty list to stock variable corresponding to mean and standard variation
Mean.variable<- grep(pattern = "mean$",colnames(data))
Sd.variable<- grep(pattern = "sd$",colnames(data))

# Creation of empty list for plot
plotmeanlist<- vector(mode = "list",length = length(Mean.variable))

# Incrementation of variable name in the differnet list
names(plotmeanlist)<- names(data[,Mean.variable])

if (Sd==TRUE){

if (is.null(modality)){

dat<-melt(data = data,
id.vars = c(idx.variable),
measure.vars = c(Mean.variable,Sd.variable))

for (i in 1:length(Mean.variable))local({
i <-i
plot<-ggplot()+
geom_line(mapping = aes(
x = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,idx.variable],
y = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,"value"],
col= interaction(color[1],linetype[1]),
linetype=interaction(color[1],linetype[1]))

)+
geom_point(mapping = aes(
x = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,idx.variable],
y = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,"value"],
col= interaction(color[1],linetype[1]),
linetype=interaction(color[1],linetype[1]))
)+
geom_line(mapping = aes(
x = dat[dat[,"variable"]==colnames(data[,Sd.variable])[i],][,idx.variable],
y = dat[dat[,"variable"]==colnames(data[,Sd.variable])[i],][,"value"]
,col= interaction(color[2],linetype[2]),
linetype= interaction(color[2],linetype[2]))
)+
xlab(idx.variable)+
ylab(colnames(data[,Mean.variable])[i])+
design

# Store all plots in a plotmeanlist
plotmeanlist[[i]] <<- plot
})
}
else if (!is.null(modality)){
dat<-melt(data = data,
id.vars = c(idx.variable,modality),
measure.vars = c(Mean.variable,Sd.variable))

# Plot mean and standard deviation for all variable and return plotmeanlist
for (i in 1:length(Mean.variable))local({
i <-i
plot<-ggplot()+
geom_line(mapping = aes(
x = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,idx.variable],
y = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,"value"],
color= data[,modality],
group=data[,modality]),
linetype=linetype[1]
)+
geom_point(mapping = aes(
x = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,idx.variable],
y = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,"value"],
color= data[,modality],group=data[,modality]),
linetype=linetype[1]
)+
geom_line(mapping = aes(
x = dat[dat[,"variable"]==colnames(data[,Sd.variable])[i],][,idx.variable],
y = dat[dat[,"variable"]==colnames(data[,Sd.variable])[i],][,"value"],
color= data[,modality],group=data[,modality]),
linetype=linetype[2]
)+
xlab(idx.variable)+
ylab(colnames(data[,Mean.variable])[i])+
design+
guides(color=guide_legend(title = modality))

# Store all plots in a plotmeanlist

plotmeanlist[[i]] <<- plot
})
}
}
else if (Sd==FALSE){
if (is.null(modality)){

dat<-melt(data = data,
id.vars = c(idx.variable),
measure.vars = c(Mean.variable))

for (i in 1:length(Mean.variable))local({
i <-i
plot<-ggplot()+
geom_line(mapping = aes(
x = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,idx.variable],
y = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,"value"],
col=interaction(color[1],linetype[1]),
linetype=interaction(color[1],linetype[1]))
)+
geom_point(mapping = aes(
x = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,idx.variable],
y = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,"value"],
col=interaction(color[1],linetype[1]),
linetype=interaction(color[1],linetype[1]))
)+

xlab(idx.variable)+
ylab(colnames(data[,Mean.variable])[i])+
design

# Store all plots in a plotmeanlist

plotmeanlist[[i]] <<- plot
})
}
else if (!is.null(modality)){

dat<-melt(data = data,
id.vars = c(idx.variable,modality),
measure.vars = c(Mean.variable))

for (i in 1:length(Mean.variable))local({
i <-i
plot<-ggplot()+
geom_line(mapping = aes(
x = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,idx.variable],
y = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,"value"],
color= data[,modality],
group=data[,modality]),
linetype=linetype[1]
)+
geom_point(mapping = aes(
x = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,idx.variable],
y = dat[dat[,"variable"]==colnames(data[,Mean.variable])[i],][,"value"],
color= data[,modality],
group=data[,modality]),
linetype=linetype[1]
)+

xlab(idx.variable)+
ylab(colnames(data[,Mean.variable])[i])+
design+
guides(color=guide_legend(title = modality))

# Store all plots in a plotmeanlist
plotmeanlist[[i]] <<- plot
})
}
}


# Function return plotmean list
return(plotmeanlist)
}

windowsFonts(Times= windowsFont("TT Times"))


# New Phytologist Journal -------------------------------------------------

Newphytol_theme<-theme_bw(base_size = 12,base_family = "Times")+
theme(
panel.border = element_rect(colour = "black",size = 0.5),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.title.x = element_text(family = "Times",size = 12,colour = "black") ,
axis.title.y = element_text(family = "Times",size = 12,colour = "black"),
axis.text.x = element_text(family = "Times",size = 10,colour = "black"),
axis.text.y = element_text(family = "Times",size = 10,colour = "black"),
axis.title = element_text(family = "Times",size = 12),
legend.text = element_text(family = "Times",size = 12),
line = element_line(size = 0.5))

str(dat.summary)
dat.summary$Date<-as.Date(dat.summary$Date,format="%d/%m/%Y")


ggplot(data=dat.summary,aes(x=Date,y=Temp_amb.mean))+geom_point()+geom_line()

summary.plot<-fc_plot.summary.data(data = dat.summary,Sd = T,idx.variable = "Date",modality =NULL,design = Newphytol_theme,color = c("#00000000","#000000"),linetype = c("solid","dashed"))
summary.plot$Temp_amb.mean
write.csv(x=dat.summary,file="C:\\Users\\mlabadie\\Documents\\GitHub\\strawberry\\share\\data\\meteo\\daily_weather.csv")

# scale_color_manual(name="",values = c("black.solid"="black","black.dashed"="black"),labels=c("sd","mean"))+
# scale_linetype_manual(name="",values = c("black.solid"="solid","black.dashed"="dashed"),labels=c("sd","mean"))

imp.nakalman.arima<-na_kalman(x = dat.summary,model = "auto.arima")
plot(imp.nakalman.arima)
# imp.seac<-na_seadec(x = meteo$Temp_amb,find_frequency=TRUE)
# plot(imp.seac)
# imp.nakalman.TS<-na_kalman(x = meteo$Temp_amb,model = "StructTS")
# plot(imp.nakalman.TS)
ggplot_na_imputations(dat.summary)
ggplot_na_distribution(imp.nakalman.arima$Temp_amb.mean)

imp.mice<- mice(data = dat.summary,m = 30,maxit = 30, method = "pmm")
summary(imp.mice)
stripplot(imp.mice, pch = 20, cex = 1.2)
xyplot(imp.mice, Temp_amb.mean~Date)
xyplot(imp.mice, Hygro~Date)
xyplot(imp.mice, Ray_ext~Date)
densityplot(imp.mice)
imp.mice.complete<-complete(imp.mice,1)

ggplot(data=imp.mice.complete,aes(x=Date,y=Temp_amb.mean))+geom_point()+geom_line()

write.csv(x=imp.mice.complete,file="C:\\Users\\mlabadie\\Documents\\GitHub\\strawberry\\share\\data\\meteo\\weather_completed.csv")


imp.mice_sum<- mice(data = dat.summary,m = 30,maxit = 1000, method = "pmm")
summary(imp.mice)

xyplot(imp.mice_sum, Temp_amb.mean~Date)
densityplot(imp.mice_sum$)
imp.mice_sum.complete<-complete(imp.mice_sum,1)

meteo['Temp_amb_imp']<-imp.mice_sum.complete$imp$Temp_amb.mean
write.csv(x=imp.mice_sum.complete,file="C:\\Users\\mlabadie\\Documents\\GitHub\\strawberry\\share\\data\\meteo\\meteo_completed.csv")

library(VIM)
aggr_plot <- aggr(meteo, col=c('navyblue','red'), numbers=TRUE, sortVars=TRUE, labels=names(meteo), cex.axis=.7, gap=3, ylab=c("Histogram of missing data","Pattern"))

weather<-dat.summary[c(1,2,4,6,8)]
names(weather)
colnames(weather)<-c(['date',"Temperature","Hygrometrie","Temperature_sol","rayonnement"])
write.csv(x=dat.summary[c(1,2,4,6,8)],file="C:\\Users\\mlabadie\\Documents\\GitHub\\strawberry\\share\\data\\meteo\\meteo_completed.csv")

Loading