Skip to content

Commit

Permalink
Fix bug in fhn and hopf OC (#255)
Browse files Browse the repository at this point in the history
* fix bug in OC of fhn and hopf for diffusive coupling

* fix style fhn

* fix style hopf

* fix style fhn

* fix style hopf
  • Loading branch information
lenasal authored Feb 13, 2024
1 parent 0776d7a commit b797770
Show file tree
Hide file tree
Showing 4 changed files with 41 additions and 17 deletions.
4 changes: 3 additions & 1 deletion neurolib/control/optimal_control/oc_fhn/oc_fhn.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,9 @@ def compute_hx(self):
"""
return compute_hx(
self.model_params,
self.model.params["K_gl"],
self.model.params["Cmat"],
self.model.params["coupling"],
self.N,
self.dim_vars,
self.T,
Expand All @@ -106,7 +109,6 @@ def compute_hx_nw(self):
return compute_hx_nw(
self.model.params["K_gl"],
self.model.params["Cmat"],
self.model.params["coupling"],
self.N,
self.dim_vars,
self.T,
Expand Down
4 changes: 3 additions & 1 deletion neurolib/control/optimal_control/oc_hopf/oc_hopf.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,9 @@ def compute_hx(self):
"""
return compute_hx(
self.model_params,
self.model.params["K_gl"],
self.model.params["Cmat"],
self.model.params["coupling"],
self.N,
self.dim_vars,
self.T,
Expand All @@ -106,7 +109,6 @@ def compute_hx_nw(self):
return compute_hx_nw(
self.model.params["K_gl"],
self.model.params["Cmat"],
self.model.params["coupling"],
self.N,
self.dim_vars,
self.T,
Expand Down
26 changes: 18 additions & 8 deletions neurolib/models/fhn/timeIntegration.py
Original file line number Diff line number Diff line change
Expand Up @@ -287,6 +287,9 @@ def jacobian_fhn(
@numba.njit
def compute_hx(
model_params,
K_gl,
cmat,
coupling,
N,
V,
T,
Expand All @@ -295,8 +298,14 @@ def compute_hx(
):
"""Jacobians of FHN model wrt. its 'state_vars' at each time step.
:param model_params: Ordered tuple of parameters in the FHN Model in order
:type model_params: tuple of float
:param model_params: Ordered tuple of parameters in the FHN Model in order
:type model_params: tuple of float
:param K_gl: Model parameter of global coupling strength.
:type K_gl: float
:param cmat: Model parameter, connectivity matrix.
:type cmat: ndarray
:param coupling: Model parameter, which specifies the coupling type. E.g. "additive" or "diffusive".
:type coupling: str
:param N: Number of nodes in the network.
:type N: int
:param V: Number of system variables.
Expand All @@ -316,14 +325,17 @@ def compute_hx(
for n in range(N): # Iterate through nodes.
for t in range(T):
hx[n, t, :, :] = jacobian_fhn(model_params, dyn_vars[n, sv["x"], t], V, sv)

if coupling == "diffusive":
for l in range(N):
hx[n, t, sv["x"], sv["x"]] += K_gl * cmat[n, l]
return hx


@numba.njit
def compute_hx_nw(
K_gl,
cmat,
coupling,
N,
V,
T,
Expand All @@ -335,8 +347,6 @@ def compute_hx_nw(
:type K_gl: float
:param cmat: Model parameter, connectivity matrix.
:type cmat: ndarray
:param coupling: Model parameter, which specifies the coupling type. E.g. "additive" or "diffusive".
:type coupling: str
:param N: Number of nodes in the network.
:type N: int
:param V: Number of system variables.
Expand All @@ -353,9 +363,9 @@ def compute_hx_nw(

for n1 in range(N):
for n2 in range(N):
hx_nw[n1, n2, :, sv["x"], sv["x"]] = K_gl * cmat[n1, n2] # term corresponding to additive coupling
if coupling == "diffusive":
hx_nw[n1, n1, :, sv["x"], sv["x"]] += -K_gl * cmat[n1, n2]
hx_nw[n1, n2, :, sv["x"], sv["x"]] = (
K_gl * cmat[n1, n2]
) # term corresponding to both diffusive and additive coupling

return -hx_nw

Expand Down
24 changes: 17 additions & 7 deletions neurolib/models/hopf/timeIntegration.py
Original file line number Diff line number Diff line change
Expand Up @@ -267,6 +267,9 @@ def jacobian_hopf(
@numba.njit
def compute_hx(
model_params,
K_gl,
cmat,
coupling,
N,
V,
T,
Expand All @@ -277,7 +280,13 @@ def compute_hx(
:param model_params: Ordered tuple of parameters in the Hopf Model in order
:type model_params: tuple of float
:param N: Number of network nodes.
:param K_gl: Model parameter of global coupling strength.
:type K_gl: float
:param cmat: Model parameter, connectivity matrix.
:type cmat: ndarray
:param coupling: Model parameter, which specifies the coupling type. E.g. "additive" or "diffusive".
:type coupling: str
:param N: Number of nodes in the network.
:type N: int
:param V: Number of state variables.
:type V: int
Expand All @@ -303,14 +312,17 @@ def compute_hx(
dyn_vars[n, sv["y"], t],
sv,
)

if coupling == "diffusive":
for l in range(N):
hx[n, t, sv["x"], sv["x"]] += K_gl * cmat[n, l]
return hx


@numba.njit
def compute_hx_nw(
K_gl,
cmat,
coupling,
N,
V,
T,
Expand All @@ -322,8 +334,6 @@ def compute_hx_nw(
:type K_gl: float
:param cmat: Model parameter, connectivity matrix.
:type cmat: ndarray
:param coupling: Model parameter, which specifies the coupling type. E.g. "additive" or "diffusive".
:type coupling: str
:param N: Number of nodes in the network.
:type N: int
:param V: Number of system variables.
Expand All @@ -340,9 +350,9 @@ def compute_hx_nw(

for n1 in range(N):
for n2 in range(N):
hx_nw[n1, n2, :, sv["x"], sv["x"]] = K_gl * cmat[n1, n2] # term corresponding to additive coupling
if coupling == "diffusive":
hx_nw[n1, n1, :, sv["x"], sv["x"]] += -K_gl * cmat[n1, n2]
hx_nw[n1, n2, :, sv["x"], sv["x"]] = (
K_gl * cmat[n1, n2]
) # corresponding to both diffusive and additive coupling

return -hx_nw

Expand Down

0 comments on commit b797770

Please sign in to comment.