-
Notifications
You must be signed in to change notification settings - Fork 86
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
111 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
import logging | ||
import time | ||
import unittest | ||
|
||
import numpy as np | ||
|
||
from neurolib.models.wc import WCModel | ||
from neurolib.models.jax.wc import WCModel as WCModel_jax | ||
from neurolib.utils.loadData import Dataset | ||
|
||
|
||
class TestWC_jax(unittest.TestCase): | ||
""" | ||
Basic test for WC model in JAX. | ||
""" | ||
|
||
def test_single_node_deterministic(self): | ||
logging.info("\t > WC jax: Testing single node ...") | ||
start = time.time() | ||
model = WCModel(seed=0) | ||
model.params["duration"] = 1.0 * 1000 | ||
model.params["sigma_ou"] = 0.0 | ||
|
||
model.run() | ||
|
||
model_jax = WCModel_jax(seed=0) | ||
model_jax.params["duration"] = 1.0 * 1000 | ||
model_jax.params["sigma_ou"] = 0.0 | ||
|
||
model_jax.run() | ||
|
||
self.assertTrue(np.allclose(model_jax.exc, model.exc)) | ||
self.assertTrue(np.allclose(model_jax.inh, model.inh)) | ||
|
||
end = time.time() | ||
logging.info("\t > Done in {:.2f} s".format(end - start)) | ||
|
||
def test_single_node_dist(self): | ||
logging.info("\t > WC jax: Testing activity dist of single node ...") | ||
start = time.time() | ||
|
||
model = WCModel() | ||
model.params["duration"] = 5.0 * 1000 | ||
model.params["sigma_ou"] = 0.01 | ||
|
||
model.run() | ||
|
||
model_jax = WCModel_jax() | ||
model_jax.params["duration"] = 5.0 * 1000 | ||
model_jax.params["sigma_ou"] = 0.01 | ||
|
||
model_jax.run() | ||
|
||
model_jax_different = WCModel_jax() | ||
model_jax_different.params["duration"] = 5.0 * 1000 | ||
model_jax_different.params["sigma_ou"] = 0.015 | ||
|
||
model_jax_different.run() | ||
|
||
bins = np.logspace(np.log10(0.001), np.log10(1.0), 50) | ||
|
||
model_hist, _ = np.histogram(model.exc.flatten(), bins=bins) | ||
model_jax_hist, _ = np.histogram(model_jax.exc.flatten(), bins=bins) | ||
model_jax_different_hist, _ = np.histogram(model_jax_different.exc.flatten(), bins=bins) | ||
|
||
self.assertTrue((np.abs(model_hist - model_jax_hist).sum() / model.exc.shape[1]) < 0.25) | ||
self.assertTrue((np.abs(model_hist - model_jax_different_hist).sum() / model.exc.shape[1]) > 0.25) | ||
|
||
model_hist_inh, _ = np.histogram(model.inh.flatten(), bins=bins) | ||
model_jax_hist_inh, _ = np.histogram(model_jax.inh.flatten(), bins=bins) | ||
model_jax_different_hist_inh, _ = np.histogram(model_jax_different.inh.flatten(), bins=bins) | ||
|
||
self.assertTrue((np.abs(model_hist_inh - model_jax_hist_inh).sum() / model.exc.shape[1]) < 0.25) | ||
self.assertTrue((np.abs(model_hist_inh - model_jax_different_hist_inh).sum() / model.exc.shape[1]) > 0.25) | ||
|
||
end = time.time() | ||
logging.info("\t > Done in {:.2f} s".format(end - start)) | ||
|
||
def test_network(self): | ||
logging.info("\t > WC jax: Testing brain network (chunkwise integration and BOLD simulation) ...") | ||
start = time.time() | ||
ds = Dataset("gw") | ||
model = WCModel(Cmat=ds.Cmat, Dmat=ds.Dmat, seed=0) | ||
|
||
model.params["signalV"] = 4.0 | ||
model.params["duration"] = 10 * 1000 | ||
model.params["sigma_ou"] = 0.0 | ||
model.params["K_gl"] = 0.6 | ||
|
||
# local node input parameter | ||
model.params["exc_ext"] = 0.72 | ||
|
||
model.run(chunkwise=True, bold=True, append_outputs=True, chunksize=20000) | ||
|
||
model_jax = WCModel_jax(Cmat=ds.Cmat, Dmat=ds.Dmat, seed=0) | ||
|
||
model_jax.params["signalV"] = 4.0 | ||
model_jax.params["duration"] = 10 * 1000 | ||
model_jax.params["sigma_ou"] = 0.0 | ||
model_jax.params["K_gl"] = 0.6 | ||
|
||
# local node input parameter | ||
model_jax.params["exc_ext"] = 0.72 | ||
|
||
model_jax.run(chunkwise=True, bold=True, append_outputs=True, chunksize=20000) | ||
|
||
# jit changes the exact numerics of outputs | ||
self.assertTrue(np.allclose(model.BOLD.BOLD, model_jax.BOLD.BOLD, rtol=1e-3)) | ||
|
||
end = time.time() | ||
logging.info("\t > Done in {:.2f} s".format(end - start)) |