Skip to content

Changes for supporting multimodal evals #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 15 additions & 3 deletions automation/evaluation_scripts/queue_lm_evaluation_harness_vllm.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from clearml import Task
import argparse

import os
#
# LOCAL
#
Expand All @@ -23,6 +23,7 @@
parser.add_argument("--enable-chunked-prefill", action="store_true", default=False)
parser.add_argument("--max-model-len", type=int, default=4096)
parser.add_argument("--max-num-batched-tokens", type=int, default=512)
#TODO FOR MULTIMODAL: parser.add_argument("--max-num-seqs", type=int, default=8)
parser.add_argument("--max-num-seqs", type=int, default=128)
parser.add_argument("--packages", type=str, nargs="+", default=None)
parser.add_argument("--apply-chat-template", action="store_true", default=False)
Expand All @@ -37,25 +38,34 @@
queue_name = args.pop("queue_name")
additional_packages = args.pop("packages")
build_vllm = args.pop("build_vllm")
#TODO FOR MULTIMODAL: os.environ["VLLM_COMMIT"] = "098f94de42859f8251fe920f87adb88336129c53"

#TODO FOR MULTIMODAL:
# packages = [
# "git+https://github.com/neuralmagic/lm-evaluation-harness.git@llama_3.1_instruct",
# "sentencepiece",
# f"https://vllm-wheels.s3.us-west-2.amazonaws.com/{os.environ['VLLM_COMMIT']}/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl",
# ]

packages = [
"git+https://github.com/neuralmagic/lm-evaluation-harness.git@llama_3.1_instruct",
"sentencepiece",
]

if build_vllm:
packages.append("git+https://github.com/vllm-project/vllm.git@main")
packages.append("git+https://github.com/vllm-project/vllm.git@refs/pull/11528/head")
else:
packages.append("vllm")



if additional_packages is not None and len(additional_packages) > 0:
packages.extend(additional_packages)

Task.force_store_standalone_script()

task = Task.init(project_name=project_name, task_name=task_name)
task.set_base_docker(docker_image="498127099666.dkr.ecr.us-east-1.amazonaws.com/mlops/k8s-research-torch:latest")
task.set_base_docker(docker_image="498127099666.dkr.ecr.us-east-1.amazonaws.com/mlops/k8s-research-clean:latest")
task.set_script(repository="https://github.com/neuralmagic/research.git", branch="main",working_dir="clearml_evaluation_parsing")
task.set_packages(packages)

Expand Down Expand Up @@ -102,6 +112,8 @@
if args["cpu_offload_gb"] is not None:
cpu_offload_gb = args["cpu_offload_gb"]
model_args += f",cpu_offload_gb={cpu_offload_gb}"
if "Llama" in args["model_id"]:
model_args += ",enforce_eager=True"

inputs = [
"python3", "-m", "lm_eval",
Expand Down
194 changes: 194 additions & 0 deletions automation/evaluation_scripts/queue_mistral_evals_vllm_multimodal.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,194 @@
from clearml import Task
import argparse
import os
#
# LOCAL
#

parser = argparse.ArgumentParser(description = "Eval model w/ lm-evaluation-harness using vllm backend")

parser.add_argument("--model-id", type=str)
parser.add_argument("--queue-name", type=str)
parser.add_argument("--project-name", type=str)
parser.add_argument("--task-name", type=str)
parser.add_argument("--clearml-model", action="store_true", default=False)
parser.add_argument("--config-format", type=str)
parser.add_argument("--server-wait-time", type=int, default=4000)
parser.add_argument("--tokenizer-mode", type=str)
parser.add_argument("--output-dir", type=str)
parser.add_argument("--eval-name", type=str)
parser.add_argument("--max-model-len", type=int, default=None)
parser.add_argument("--packages", type=str, nargs="+", default=None)
parser.add_argument("--limit-mm-per-prompt", type=str)
parser.add_argument("--trust-remote-code", action="store_true", default=False)
parser.add_argument("--build-vllm", action="store_true", default=False)

args = parser.parse_args()

args = vars(args)
project_name = args.pop("project_name")
task_name = args.pop("task_name")
queue_name = args.pop("queue_name")
additional_packages = args.pop("packages")
#os.environ["VLLM_COMMIT"] = "098f94de42859f8251fe920f87adb88336129c53"

packages = [
"datasets==3.0.0",
"fire==0.6.0",
"numpy==1.26.4",
"openai==1.60.0",
"pillow==10.4.0",
"tqdm==4.66.5",
"mistral_common[opencv]",
#f"https://vllm-wheels.s3.us-west-2.amazonaws.com/{os.environ['VLLM_COMMIT']}/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl",
"vllm",
]

# # After installing vllm, uninstall any existing torch version
# post_install_commands = [
# "pip uninstall -y torch",
# "pip install torch==2.5.1 --index-url https://download.pytorch.org/whl/cu121"
# ]

if additional_packages is not None and len(additional_packages) > 0:
packages.extend(additional_packages)

Task.force_store_standalone_script()

# # Create a symbolic link from python3 to python
# if not os.path.exists("/usr/bin/python"):
# subprocess.run(["ln", "-s", "/usr/bin/python3.10", "/usr/bin/python"], check=True)

task = Task.init(project_name=project_name, task_name=task_name)
task.set_base_docker(docker_image="498127099666.dkr.ecr.us-east-1.amazonaws.com/mlops/k8s-research-clean:latest")
# Add the repository URL as a requirement
task._update_requirements(
{"pip": ["git+https://github.com/mistralai/mistral-evals.git@main"]}
)
task.set_script(repository="https://github.com/mistralai/mistral-evals.git", branch="main",working_dir=".")
task.set_packages(packages)
task.execute_remotely(queue_name)

# # Run post-install commands to enforce the correct PyTorch version
# for command in post_install_commands:
# os.system(command)

#
# REMOTE
#

from clearml import InputModel
from glob import glob
import subprocess
import requests
import time
import os
import sys
from urllib.parse import urlparse

if "single" in queue_name or "x1" in queue_name:
num_gpus = 1
elif "double" in queue_name or "x2" in queue_name:
num_gpus = 2
elif "quad" in queue_name or "x4" in queue_name:
num_gpus = 4
elif "octo" in queue_name or "x8" in queue_name:
num_gpus = 8

if args["clearml_model"]:
input_model = InputModel(model_id=args["model_id"])
model_id = input_model.get_local_copy()
task.connect(input_model)
else:
model_id = args["model_id"]

#VLLM Serve

# Determine the paths for the executable and VLLM
executable_path = os.path.dirname(sys.executable)
vllm_path = os.path.join(executable_path, "vllm")

# Build the initial server command with the vllm executable and action
server_command = [vllm_path, "serve", model_id]

# Add optional arguments if provided
if args["config_format"] is not None:
server_command.extend(["--config_format", args["config_format"]])

if args["tokenizer_mode"] is not None:
server_command.extend(["--tokenizer_mode", args["tokenizer_mode"]])

# Add optional GPU configuration if applicable
if num_gpus > 1:
server_command.extend(["--tensor_parallel_size", str(num_gpus)])

# If max_model_len is provided, ensure it's added to the command
if args["max_model_len"] is not None:
server_command.extend(["--max_model_len", str(args["max_model_len"])])

if args["limit_mm_per_prompt"] is not None:
server_command.extend(["--limit_mm_per_prompt", args["limit_mm_per_prompt"]])

server_command.extend(["--max_num_seqs", "8"])

server_command.extend(["--gpu_memory_utilization", "0.9"])
# server_command.extend(["--dtype", "float16"])

if "Llama" in args["model_id"]:
server_command.extend(["--disable_frontend_multiprocessing"])
server_command.extend(["--enforce_eager"])

import random

# Generate a random 4-digit port number
random.seed(time.time())
random_port = random.randint(1000, 9999)

server_command.extend(["--port", f"{random_port}"])

# Set up the log file for the server
server_log_file = open("vllm_server_log.txt", "w")

print("server_command", server_command)

# Start vllm server
server_process = subprocess.Popen(" ".join(server_command), stdout=server_log_file, stderr=server_log_file, shell=True)

# Wait for server to spin up
delay = 5
server_initialized = False

# Construct the server URL with the random port
server_url = f"http://localhost:{random_port}/v1"

for _ in range(args["server_wait_time"] // delay):
try:
response = requests.get(server_url + "/models")
if response.status_code == 200:
print("Server initialized")
server_initialized = True
break # Exit the loop if the request is successful
except requests.exceptions.RequestException as e:
pass

time.sleep(delay)

if server_initialized:
inputs = [
"python3", "-m", "eval.run", "eval_vllm",
"--model_name", args["model_id"],
"--url", f"http://0.0.0.0:{random_port}",
"--output_dir", args["output_dir"],
"--eval_name", args["eval_name"],
]
print("Starting evaluation...")
subprocess.run(" ".join(inputs), shell=True)

server_process.kill()

task.upload_artifact(name="evaluation output", artifact_object=args["output_dir"])
task.upload_artifact(name="vLLM server log", artifact_object="vllm_server_log.txt")
else:
server_process.kill()
task.upload_artifact(name="vLLM server log", artifact_object="vllm_server_log.txt")
print("Server failed to intialize")