Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ version `1.15` or later.

[source, python, role=no-test]
----
%pip install "graphdatascience>=1.15" python-dotenv
%pip install "graphdatascience>=1.15" python-dotenv "neo4j_viz[gds]"
----

[source, python, role=no-test]
Expand Down Expand Up @@ -252,6 +252,18 @@ G, result = gds.graph.project(
str(G)
----

[source, python, role=no-test]
----
# Let us visualize the projected graph
from neo4j_viz.gds import from_gds
VG = from_gds(gds, G, db_node_properties=["name"])
for node in VG.nodes:
node.caption = node.properties.get("name")
VG.render(initial_zoom=1.2)
----

== Running Algorithms

You can run algorithms on the constructed graph using the standard GDS
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ version `1.15` or later.

[source, python, role=no-test]
----
%pip install "graphdatascience>=1.15" python-dotenv
%pip install "graphdatascience>=1.15" python-dotenv "neo4j_viz[gds]"
----

[source, python, role=no-test]
Expand Down Expand Up @@ -204,6 +204,18 @@ G = gds.graph.construct("people-fruits", nodes, relationships)
str(G)
----

[source, python, role=no-test]
----
# Let us visualize the projected graph
from neo4j_viz.gds import from_gds

VG = from_gds(gds, G, db_node_properties=["name"])
for node in VG.nodes:
node.caption = node.properties.get("name")

VG.render(initial_zoom=1.2)
----

== Running Algorithms

You can run algorithms on the constructed graph using the standard GDS
Expand Down
24 changes: 23 additions & 1 deletion doc/modules/ROOT/pages/tutorials/graph-analytics-serverless.adoc
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ version `1.15` or later.

[source, python, role=no-test]
----
%pip install "graphdatascience>=1.15" python-dotenv
%pip install "graphdatascience>=1.15" python-dotenv "neo4j_viz[gds]"
----

[source, python, role=no-test]
Expand Down Expand Up @@ -244,6 +244,28 @@ G, result = gds.graph.project(
str(G)
----

[source, python, role=no-test]
----
# Let us visualize the projected graph
from neo4j_viz.gds import from_gds

VG = from_gds(gds, G, db_node_properties=["name"])
for node in VG.nodes:
node.caption = node.properties.get("name")

VG.render(initial_zoom=1.2)
----

[source, python, role=no-test]
----

----

[source, python, role=no-test]
----

----

== Running Algorithms

You can run algorithms on the constructed graph using the standard GDS
Expand Down
18 changes: 17 additions & 1 deletion examples/graph-analytics-serverless-self-managed.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@
},
"outputs": [],
"source": [
"%pip install \"graphdatascience>=1.15\" python-dotenv"
"%pip install \"graphdatascience>=1.15\" python-dotenv \"neo4j_viz[gds]\""
]
},
{
Expand Down Expand Up @@ -314,6 +314,22 @@
"str(G)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Let us visualize the projected graph\n",
"from neo4j_viz.gds import from_gds\n",
"\n",
"VG = from_gds(gds, G, db_node_properties=[\"name\"])\n",
"for node in VG.nodes:\n",
" node.caption = node.properties.get(\"name\")\n",
"\n",
"VG.render(initial_zoom=1.2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down
18 changes: 17 additions & 1 deletion examples/graph-analytics-serverless-standalone.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@
},
"outputs": [],
"source": [
"%pip install \"graphdatascience>=1.15\" python-dotenv"
"%pip install \"graphdatascience>=1.15\" python-dotenv \"neo4j_viz[gds]\""
]
},
{
Expand Down Expand Up @@ -272,6 +272,22 @@
"str(G)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Let us visualize the projected graph\n",
"from neo4j_viz.gds import from_gds\n",
"\n",
"VG = from_gds(gds, G, db_node_properties=[\"name\"])\n",
"for node in VG.nodes:\n",
" node.caption = node.properties.get(\"name\")\n",
"\n",
"VG.render(initial_zoom=1.2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down
32 changes: 31 additions & 1 deletion examples/graph-analytics-serverless.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@
},
"outputs": [],
"source": [
"%pip install \"graphdatascience>=1.15\" python-dotenv"
"%pip install \"graphdatascience>=1.15\" python-dotenv \"neo4j_viz[gds]\""
]
},
{
Expand Down Expand Up @@ -306,6 +306,36 @@
"str(G)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Let us visualize the projected graph\n",
"from neo4j_viz.gds import from_gds\n",
"\n",
"VG = from_gds(gds, G, db_node_properties=[\"name\"])\n",
"for node in VG.nodes:\n",
" node.caption = node.properties.get(\"name\")\n",
"\n",
"VG.render(initial_zoom=1.2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down