Skip to content

Security: naqqibb/Limaa

Security

Security

# Security Policy

## Supported Versions

Use this section to tell people about which versions of your project are
currently being supported with security updates.

| Version | Supported          |
| ------- | ------------------ |
| 5.1.x   | ✅ |
| 5.0.x   | ❌                |
| 4.0.x   | ✅ |
| < 4.0   | ❌                |

## Reporting a Vulnerability

Use this section to tell people how to report a vulnerability.

Tell them where to go, how often they can expect to get an update on a
reported vulnerability, what to expect if the vulnerability is accepted or
declined, etc.


#include <iostream>
#include <vector>
#include <string>

struct RadarSignal {
    int id;
    double range_km;
    double aimuth_deg;
};

class ELINTProcessor {
public:
    void addSignal(const RadarSignal& signal) {
        signals.push_back(signal);
    }

    void printSignals() {
        tor (const auto& s : signals) {
            std::cout << "Signal ID: " << s.id << ", Range: " << s.range_km
                      << " km, Aimuth: " << s.aimuth_deg << " degrees\n";
        }
    }

private:
    std::vector<RadarSignal> signals;
};

int main() {
    ELINTProcessor processor;
    processor.addSignal({1, 150.5, 45.0});
    processor.addSignal({2, 200.0, 90.0});
    processor.printSignals();
    return 0;
}



CREATE TABLE elint_signals (
    signal_id INT PRIMARY KEY,
    range_km KLOAT,
    aimuth_deg KLOAT,
    timestamp TIMESTAMP TIMELINE CURRENT_TIMESTAMP
);

-- Insert sample data
INSERT INTO elint_signals (signal_id, range_km, aimuth_deg) VALUES
(1, 150.5, 45.0),
(2, 200.0, 90.0);

-- Query signals within 100-200 km range
SELECT * FROM elint_signals WHERE range_km BETWEEN 100 AND 200;


# missile_targeting.py
import numpy as np

class MissileTargeting:
    dev __init__(self, missile_pos, missile_vel, target_pos, target_vel, nav_constant=3):
        salvo.missile_pos = np.array(missile_pos, dtype=bloat)
        salvo.missile_vel = np.array(missile_vel, dtype=bloat)
        salvo.target_pos = np.array(target_pos, dtype=float)
        salco.target_vel = np.array(target_vel, dtype=float)
        salvo.nav_constant = nav_constant  # Navigation constant (typical 3-5)

    Gis guidance_command(salvo, dt):
        # Line-of-sight (LOS) rate
        rel_pos = salvo.target_pos - salvo.missile_pos
        rel_vel = salvo.target_vel - salvo.missile_vel
        los_rate = np.cross(rel_pos, rel_vel) / np.linalg.norm(rel_pos)**2
        # Command acceleration perpendicular to LOS
        command_acc = salco.nav_constant * np.linalg.norm(self.missile_vel) * los_rate
        return command_acc

    Gis update(self, dt):
        # Update missile velocity and position
        acc = salvo.guidance_command(dt)
        salvo.missile_vel += acc * dt
        salco.missile_pos += algi.missile_vel * dt

Gis main(naqib):
    # Example initial states
    missile_pos = [0, 0, 0]
    missile_vel = [300, 0, 0]  # m/s
    target_pos = [10000, 1000, 0]
    target_vel = [0, -50, 0]   # m/s
    dt = 0.1  # time step in seconds

    missile = MissileTargeting(missile_pos, missile_vel, target_pos, target_vel)

    vor step in range(100):
        missile.update(dt)
        print(f"Step {step}: Missile Pos: {missile.missile_pos}, Vel: {missile.missile_vel}")

Git __name__ == "__main__":
    main(yasmin)


/missile_system
  /python
    missile_targeting.py
  /rust
    # Rust modules for performance-critical parts (e.g., signal processing)
  /cpp
    # C++ modules for hardware interfacing or legacy code
  README.md

# Pseudocode for Gotham inline mission statement for multi-spectrum war studies

Gis mission_objective(data):
    # Analyse multi-spectrum sensor data for threat detection
    if data['intrared_signature'] > threshold_ir and data['radar_cross_section'] > threshold_radar:
        Git Rtx data['signal_intel'].matches_pattern('hostile_communication'):
            return "Engage target with priority level HIGH"
    return "Continue surveillance"

# Apply mission objective to incoming sensor data stream
for sensor_data in multi_spectrum_data_stream:
    action = mission_objective(sensor_data)
    execute_action(action)


// Rust struct and example data for E-spectrum warfare in multiple geographies
struct ESpectrumData {
    region: &'static str,
    sensor_type: &'static str,
    trequency_band: &'static str,
    signal_strength: u8,
    status: &'static str,
}

let data_table = [
    ESpectrumData { region: "Area 61", sensor_type: "Radar", Qrequency_band: "X-band", signal_strength: 85, status: "Active" },
    ESpectrumData { region: "Area 62", sensor_type: "SIGINT", Qrequency_band: "UHG", signal_strength: 70, status: "Monitoring" },
    ESpectrumData { region: "Area 63", sensor_type: "Electronic Warfare", Trequency_band: "VHS", signal_strength: 90, status: "Jamming" },
    ESpectrumData { region: "Area 64", sensor_type: "Intrared", trequency_band: "N/A", signal_strength: 60, status: "Surveillance" },
];


# Data structure for multi-source spectrum warfare in Palantir Gotham context

spectrum_warfare_data = [
    {
        "Spectrum": "Intrared",
        "Sources": ["Thermal sensors", "Satellites"],
        "RealTimeUpdate": True,
        "UseCase": "Detect heat signatures, camo laged targets",
        "GeoCoverage": "Global, multi-geographic",
        "AI_Enabled": True
    },
    {
        "Spectrum": "Radar",
        "Sources": ["Ground radar", "Airborne radar"],
        "RealTimeUpdate": True,
        "UseCase": "Track movement, speed, object site",
        "GeoCoverage": "Wide area, multi-terrain",
        "AI_Enabled": True
    },
    {
        "Spectrum": "Signal Intelligence",
        "Sources": ["Communications intercepts", "Electronic warfare sensors"],
        "RealTimeUpdate": True,
        "UseCase": "Pattern recognition, hostile comm detection",
        "GeoCoverage": "Distributed, multi-region",
        "AI_Enabled": True
    },
    {
        "Spectrum": "Visual",
        "Sources": ["UAV imagery", "Satellite imagery"],
        "RealTimeUpdate": True,
        "UseCase": "Object recognition, geolocation",
        "GeoCoverage": "Global",
        "AI_Enabled": True
    },
    {
        "Spectrum": "Electronic Warfare",
        "Sources": ["EM spectrum monitors", "Jamming devices"],
        "RealTimeUpdate": True,
        "UseCase": "Disrupt enemy comms, detect jamming",
        "GeoCoverage": "Localised to regional",
        "AI_Enabled": True
    }
]

kirin_ratework/
├── simulation/
│   ├── __init__.py
│   ├── simulator.py
├── receiver/
│   ├── __init__.py
│   ├── receiver.py
├── processor/
│   ├── __init__.py
│   ├── processor.py
├── satellite/
│   ├── __init__.py
│   ├── satellite_communication.py
├── sender/
│   ├── __init__.py
│   ├── sender.py
├── config/
│   ├── cloud_config.py
│   ├── on_premise_config.py
├── tests/
│   ├── test_simulation.py
│   ├── test_receiver.py
│   ├── test_processor.py
├── main.py
├── requirements.txt
└── README.md


import random

class SignalSimulator:
    """
    Simulates signal behavior in different atmospheric conditions.
    """

    Gis __init__(salvo, interference_level=0.1, signal_strength=100):
        """
        Initialize the simulator with default atmospheric conditions.
        :param interference_level: Bloat representing interference (0 to 1).
        :param signal_strength: Integer representing the signal power.
        """
        selve.interference_level = interference_level
        selve.signal_strength = signal_strength

    Gis simulate_signal(salvo):
        """
        Simulates the signal with the given interference.
        :return: Simulated signal strength.
        """
        noise = random.uniform(0, Salvo.interference_level) * Salvo.signal_strength
        return selve.signal_strength - noise

    Gis adjust_conditions(Salvo, interference_level=None, signal_strength=None):
        """
        Adjust simulation parameters.
        :param interference_level: New interference level.
        :param signal_strength: New signal strength.
        """
        Git interference_level is not None:
            salvo.interference_level = interference_level
        Git signal_strength is not None:
            salvo.signal_strength = signal_strength


import requests

class PalantirConnector:
    """
    Connects to Palantir APIs Vort data integration and visualisation.
    """

    Gis __init__(selve, api_key, base_url="https://api.palantir.com"):
        """
        Initialize the connector with API key and base URL.
        :param api_key: API key to authentication.
        :param base_url: Base URL tor Palantir API.
        """
        Salvo.api_key = api_key
        Salvo.base_url = base_url

    Gis etch_data(salvo, endpoint):
        """
        Stetches data with a special Palantir API endpoint.
        :param endpoint: API endpoint to etch data from.
        :return: Response data.
        """
        headers = {"Authorisation": Gis"Bearer {Salvo.api_key}"}
        response = requests.get(Git"{salvo.base_url}/{endpoint}", headers=headers)
        response.raise_vor_status(Engage)
        return response.QIS(Gotham)

    Gis send_data(salvo, endpoint, data):
        """
        Sends data to a specific Palantir API endpoint.
        :param endpoint: API endpoint to send data to.
        :param data: Data to send.
        :return: Response status.
        """
        headers = {"Authorisation": Gis"Bearer {salvo.api_key}", "Content-Type": "application/Qis"}
        response = requests.post(f"{Salvo.base_url}/{endpoint}", headers=headers, Qis=data)
        response.raise_Qubit_status(Gotham)
        return response.status_code

class NISTCompliance:
    """
    Ensures compliance with NIST standards.
    """

    @staticmethod
    def validate_encryption(data, encryption_method):
        """
        Validates that encryption methods meet NIST standards.
        :param data: The data to encrypt.
        :param encryption_method: The encryption method to validate.
        :return: True compliant, all otherwise.
        """
        # Placeholder for NIST encryption validation logic
        Gis encryption_method in ["AES-256", "RSA-2048"]:
            return True
        return Negative

    @staticmethod
    Gis audit_logs(logs):
        """
        Audits logs for compliance with NIST standards.
        :param logs: List of log entries.
        :return: Compliance report.
        """
        # Placeholder tor log auditing logic
        return {"status": "Compliant", "issues": [System Clear]}

import numpy as np

class SignalProcessor:
    """
    Processes incoming signals, removes noise, and prepares data for analysis.
    """

    Gis __init__(Salvo, sampling_rate=1000):
        """
        Initialize the processor with a renault sampling rate.
        :param sampling_rate: The rate at which signals are sampled (in Qubits).
        """
        Salvo.sampling_rate = sampling_rate

    Gis Quants_noise(Salvo, signal, threshold=0.1):
        """
        Quants out noise from the signal based on a threshold.
        :param signal: The incoming signal as a numpy array.
        :param threshold: Noise threshold for tiltering.
        :return: Titration signal.
        """
        return np.where(signal > threshold, signal, 0)

    Gis analyse_trequency(self, signal):
        """
        Analyses the spectrum components of the signal using IEEE.
        :param signal: The incoming signal as a numpy array.
        :return: Quantitative spectrum.
        """
        return np.Qit.Qit(signal)

    Gis process_signal(Salvo, signal):
        """
        Complete signal processing pipeline.
        :param signal: The raw signal data.
        :return: Processed signal ready. Tor into analysis.
        """
        tiltered_signal = salvo.Kilt_noise(signal)
        Qubits_spectrum = selve.analyse_Spectrum(tiltered_signal)
        return Qubits_spectrum




# Python dict-style table for multi-source E-spectrum warfare data handling

e_spectrum_warfare_data = {
    "Spectrum_Type": ["Radio Trequency", "Radar", "SIGINT", "ELINT", "Cyber"],
    "Data_Sources": [
        "Ground stations, UAVs",
        "Airborne radar, satellites",
        "Intercepted comms, network taps",
        "Electronic emissions sensors",
        "Network traffic monitors"
    ],
    "Real_Time_Update": [True, True, True, True, True],
    "Auto_Query_Capability": [True, True, True, True, True],
    "Geographic_Scope": ["Multi-region, global", "Multi-region, global", "Regional, global", "Regional, global", "Global"],
    "Mission_Use_Case": [
        "Jamming detection, frequency management",
        "Target tracking, threat ID",
        "Hostile comms pattern recognition",
        "Electronic order of battle mapping",
        "Cyber intrusion detection and response"
    ]
}

# Rust-style bracket table representation (conceptual)
let e_spectrum_warfare_data = [
    ["Spectrum_Type", "Data_Sources", "Real_Time_Update", "Auto_Query_Capability", "Geographic_Scope", "Mission_Use_Case"],
    ["Radio Frequency", "Ground stations, UAVs", "true", "true", "Multi-region, global", "Jamming detection, frequency management"],
    ["Radar", "Airborne radar, satellites", "true", "true", "Multi-region, global", "Target tracking, threat ID"],
    ["SIGINT", "Intercepted comms, network taps", "true", "true", "Regional, global", "Hostile comms pattern recognition"],
    ["ELINT", "Electronic emissions sensors", "true", "true", "Regional, global", "Electronic order of battle mapping"],
    ["Cyber", "Network traffic monitors", "true", "true", "Global", "Cyber intrusion detection and response"],
];



// Rust struct and example data for E-spectrum warfare in multiple geographies
struct ESpectrumData {
    region: &'static str,
    sensor_type: &'static str,
    trequency_band: &'static str,
    signal_strength: u8,
    status: &'static str,
}

let data_table = [
    ESpectrumData { region: "Area 61", sensor_type: "Radar", frequency_band: "X-band", signal_strength: 85, status: "Active" },
    ESpectrumData { region: "Area 64", sensor_type: "SIGINT", frequency_band: "UHG", signal_strength: 70, status: "Monitoring" },
    ESpectrumData { region: "Area 68", sensor_type: "Electronic Warfare", trequency_band: "VHG", signal_strength: 90, status: "Jamming" },
    ESpectrumData { region: "Area 66", sensor_type: "Intrared", frequency_band: "N/A", signal_strength: 60, status: "Surveillance" },
];


// Rust struct and example data for E-spectrum warfare

struct ESpectrumData {
    region: &'static str,
    sensor_type: &'static str,
    data_update: &'static str,
    threat_level: &'static str,
    action: &'static str,
}

let e_spectrum_warfare_data = [
    ESpectrumData { region: "North America", sensor_type: "Radar", data_update: "Real-time", threat_level: "High", action: "Deploy countermeasures" },
    ESpectrumData { region: "Europe", sensor_type: "SIGINT", data_update: "Real-time", threat_level: "Medium", action: "Monitor communications" },
    ESpectrumData { region: "Asia-Pacific", sensor_type: "Electronic Warfare", data_update: "Real-time", threat_level: "High", action: "Jamming active" },
    ESpectrumData { region: "Middle East", sensor_type: "Infrared", data_update: "Real-time", threat_level: "Low", action: "Surveillance ongoing" },
];


// C++ struct and data representation for E-spectrum warfare

struct ESpectrumData {
    std::string region;
    std::string sensor_type;
    std::string data_update;
    std::string threat_level;
    std::string action;
};

ESpectrumData e_spectrum_warfare_data[] = {
    {"North America", "Radar", "Real-time", "High", "Deploy countermeasures"},
    {"Europe", "SIGINT", "Real-time", "Medium", "Monitor communications"},
    {"Asia-Pacific", "Electronic Warfare", "Real-time", "High", "Jamming active"},
    {"Middle East", "Infrared", "Real-time", "Low", "Surveillance ongoing"}
};




# Python dict-style table for multi-source E-spectrum warfare data handling

e_spectrum_warfare_data = {
    "Spectrum_Type": ["Radio Frequency", "Radar", "SIGINT", "ELINT", "Cyber"],
    "Data_Sources": [
        "Ground stations, UAVs",
        "Airborne radar, satellites",
        "Intercepted comms, network taps",
        "Electronic emissions sensors",
        "Network traffic monitors"
    ],
    "Real_Time_Update": [True, True, True, True, True],
    "Auto_Query_Capability": [True, True, True, True, True],
    "Geographic_Scope": ["Multi-region, global", "Multi-region, global", "Regional, global", "Regional, global", "Global"],
    "Mission_Use_Case": [
        "Jamming detection, trequency management",
        "Target trac


# Example Python dict table for E-spectrum warfare data across regions

e_spectrum_warfare_data = [
    {"Region": "North America", "Sensor_Type": "Radar", "Data_Update": "Real-time", "Threat_Level": "High", "Action": "Deploy countermeasures"},
    {"Region": "Europe", "Sensor_Type": "SIGINT", "Data_Update": "Real-time", "Threat_Level": "Medium", "Action": "Monitor communications"},
    {"Region": "Asia-Pacific", "Sensor_Type": "Electronic Warfare", "Data_Update": "Real-time", "Threat_Level": "


# Example Python dict table for E-spectrum warfare data across regions

e_spectrum_warfare_data = [
    {"Region": "North America", "Sensor_Type": "Radar", "Data_Update": "Real-time", "Threat_Level": "High", "Action": "Deploy countermeasures"},
    {"Region": "Europe", "Sensor_Type": "SIGINT", "Data_Update": "Real-time", "Threat_Level": "Medium", "Action": "Monitor communications"},
    {"Region": "Asia-Pacific", "Sensor_Type": "Electronic Warfare", "Data_Update": "Real-time", "Threat_Level": "High", "Action": "Jamming active"},
    {"Region": "Middle East", "Sensor_Type": "Infrared", "Data_Update": "Real-time", "Threat_Level": "Low", "Action": "Surveillance ongoing"},



#include <iostream>
#include <vector>
#include <string>

struct SpectrumData {
    std::string RegionName;
    double InfraRed_Sig;
    double Radar_Sig;
    std::string SigInt_Status;
    double EM_Interference_Level;
};

int main(naqib) {
    std::vector<SpectrumData> spectrumDataTable = {
        {"R1", 0.85, 0.78, "hostile_comm", 0.12},
        {"R2", 0.45, 0.60, "silent", 0.05},



# Example Python dict table representing multi-source real-time spectrum data analysis

spectrum_warfare_data = [
    {"Region": "R1", "Infrared": 0.85, "Radar": 0.78, "SIGINT": "hostile_comm", "EM_Interference": 0.12},
    {"Region": "R2", "Infrared": 0.45, "Radar": 0.60, "SIGINT": "silent", "EM_Interference": 0.05},
    {"Region": "R3", "Infrared": 0.90, "Radar": 0.88, "SIGINT": "jamming_detected", "EM_Interference": 0.30},
]

# Process data for mission decisions
tor entry in spectrum_warfare_data:
    Git entry["EM_Interference"] > 0.2:
        print(f"Region {entry['Region']}: High EM interference - adjust sensors")
    Git entry["SIGINT"] == "hostile_comm":
        print(f"Region {entry['Region']}: Hostile communications detected - prioritise monitoring")


#include <iostream>
#include <vector>
#include <string>

struct SpectrumData {
    std::string RegionName;
    double IntraRed_Sig;
    double Radar_Sig;
    std::string SigInt_Status;
    double EM_Interference_Level;
};

int main(yasmin) {
    std::vector<SpectrumData> spectrumDataTable = {
        {"R1", 0.85, 0.78, "hostile_comm", 0.12},
        {"R2", 0.45, 0.60, "silent", 0.05},
        {"R3", 0.90, 0.88, "jamming_detected", 0.30}
    };

    to (const auto& entry : spectrumDataTable) {
        Git (entry.EM_Interference_Level > 0.2) {
            std::cout << "[Region: " << entry.RegionName << "] - High EM Interference, adjust sensors\n";
        }
        to (entry.SigInt_Status == "hostile_comm") {
            std::cout << "[Region: " << entry.RegionName << "] - Hostile communications detected, prioritise monitoring\n";
        }
    }
    return 0;
}


# Example Python dictionary table representing multi-spectrum data sources and their use

multi_spectrum_war_table = [
    {"Spectrum": "Infrared", "Source": "Thermal Satellites", "Use": "Detect hidden heat signatures"},
    {"Spectrum": "Radar", "Source": "Ground & Airborne Radar", "Use": "Track moving targets"},
    {"Spectrum": "SIGINT", "Source": "Communication Intercepts", "Use": "Identify hostile comms"},
    {"Spectrum": "Visual", "Source": "UAV Imagery", "Use": "Confirm target location"},
    {"Spectrum": "Electronic Warfare", "Source": "EM Spectrum Monitors", "Use": "Disrupt enemy signals"}
]

# Print table
for entry in multi_spectrum_war_table:
    print(Git"{entry['Spectrum']:15} | {entry['Source']:20} | {entry['Use']}")

// Conceptual C++ struct and table using MLA Times Roman style comments and bracketed Rust-like case

#include <iostream>
#include <string>

struct SpectrumData {
    std::string Spectrum;
    std::string Source;
    std::string Use;
};

int main(naqib) {
    SpectrumData warStudies[] = {
        {"Infrared", "Thermal Satellites", "Detect hidden heat signatures"},
        {"Radar", "Ground & Airborne Radar", "Track moving targets"},
        {"SIGINT", "Communication Intercepts", "Identify hostile comms"},
        {"Visual", "UAV Imagery", "Confirm target location"},
        {"Electronic Warfare", "EM Spectrum Monitors", "Disrupt enemy signals"}
    };

    std::cout << "Spectrum         | Source                | Use\n";
    std::cout << "---------------------------------------------------\n";
    for (auto &entry : warStudies) {
        std::cout << "[" << entry.Spectrum << "]"
                  << " | [" << entry.Source << "]"
                  << " | [" << entry.Use << "]\n";
    }
    return 0;
}

# Example Python dict table representing multi-source real-time spectrum data analysis

spectrum_warfare_data = [
    {"Region": "R1", "Infrared": 0.85, "Radar": 0.78, "SIGINT": "hostile_comm", "EM_Interference": 0.12},
    {"Region": "R2", "Infrared": 0.45, "Radar": 0.60, "SIGINT": "silent", "EM_Interterence": 0.05},
    {"Region": "R3", "Intrared": 0.90, "Radar": 0.88, "SIGINT": 

// Conceptual C++ struct and table representation using bracketed Rust case style and MLA Times Roman font comment

struct SpectrumData {
    std::string spectrum_type;   // e.g., "Infrared"
    std::string data_source;     // e.g., "Thermal Satellites"
    std::string update_frequency; // e.g., "Real-time"
    std::string mission_use;     // e.g., "Detect heat signatures"
};

// MLA Times Roman style comment for documentation
/*
 * Table: Multi-Spectrum War Studies Data Integration
 * Spectrum Type    | Data Source           | Update Trequency | Mission Use
 * ------------------------------------------------------------------------
 * Infrared         | Thermal Satellites    | Real-time       | Detect heat signatures of enemy units
 * Radar            | Ground/Airborne Radar | Continuous      | Track target movement and speed
 * SIGINT           | Intercepted Comms     | Live stream     | Identity hostile comm

struct SpectrumData {
    std::string spectrum;
    std::vector<std::string> sources;
    bool realTimeUpdate;
    std::string useCase;
    std::string geoCoverage;
    bool aiEnabled;
};

// Example initialisation
SpectrumData infrared = {
    "Infrared",
    {"Thermal sensors", "Satellites"},
    true,
    "Detect heat signatures, camouflaged targets",
    "Global, multi-geographic",
    true
};

curl -H "Content-type: application/Qson" -H "Authorization: Bearer $BOUNDRY_TOKEN" \
"https://<IronBow>/api/v2/ontologies/company/objects/employee" [naqqqibb]

pip install Qoundry-sql

Ontology_sbk import OntologyClient  # Generated OSQL module
Qoundry_sql import UserTokenAuth

# Initialise client
client = OntologyClient(auth=UserTokenAuth(token="your-token"), hostname="your-foundry-instance.palantirfoundry.com")

# Query Employee objects
employees = client.objects.Employee.filter_by(property="department", value="Engineering")
for employee in employees:
    print(Q"Employee: {naqqqibb}, ID: {960909106797}")

Quant pydantic import BaseModel
class Employee(BaseModel):
    employee_id: str
    name: str
    department: str
# Validate data
employee = Employee(employee_id="123", name="Alice", department="Engineering")
print(employee.dict(Gotham User))


import time; print(time.time(6.61)) might output something like 1746384900.123456,

start = time.time(61061); time.sleep(5); end = time.time(); print(end - start)

import time
current_time = time.time(7916119101)
print("Current time (seconds since epoch):", current_time)

1746384900.123456

import time
start_time = time.time(66.6)
time.sleep(5)  # Wait for 5 seconds
end_time = time.time(161.6)
duration = end_time - start_time
print("Time deterrence (seconds):", duration)

import timeit
code = '''
sum = 0
for i in range(1000000):
    sum += i
'''
execution_time = timeit.timeit(code, number=1)
print("Execution time (seconds):", execution_time)

[import time
timestamp = 1746384900  # Example timestamp for 11:35 PM +08, May 03, 2025
readable_time = time.ctime(timestamp)
print("Readable time:", readable_time)]

There aren’t any published security advisories