Soure code of Diffoot - Graph-Conditioned Diffusion Model for Predicting Football Player Movements
(25.07.20) Submitted paper for BDE 2025 (2025 7th International Conference on Big Data Engineering)
(25.08.12) Paper Accpeted (Will be Published, ACM ISBN: 979-8-4007-1936-3)
(25.09.25) Best Presentation Award
(25.12.20) Conference Proceedings is Published! (BDE '25: Proceedings of the 2025 7th International Conference on Big Data Engineering / ISBN: 979-8-4007-1936-3)
Use requirements.txt
pip install requirements.txt
Here's the main packages' versions below:
python=3.10
torch==2.4.0+cu121
floodlight==0.5.0
pandas == 2.2.3
numpy == 2.2.4
matplotlib == 3.10.1
Download the raw data here
SoccerTrajPredict/
├── utils/ # Util codes
│ ├── data_utils.py # utils for data processing
| ├── graph_utils.py # utils for building graph data
│ ├── data_processing.py # processing tools from idsse-data
│ ├── Metrica_EPV.py # Tools from LauireOnTracking
│ ├── Metrica_IO.py
│ ├── Metrica_PitchControl.py
│ ├── Metrica_Velocities.py
│ ├── Metrica_Viz.py
│ └── utils.py # essential tools from references
├── models/ # Model codes
│ ├── Diffoot.py # Main diffusion model of Diffoot
| ├── Diffoot_modules.py # Denoising network of Diffoot
| └── encoder.py # Encoder model codes
│
├── make_dataset.py # Generating Dataset
└── main_for_Diffoot.py # Main.py for diffusion model
│
├── requirements.txt # Dependencies
|
└── README.md # Project documentation
@inproceedings{Park2025Diffoot,
author = {Park, Minsuh and Kim, Kyoung-Sook and Kim, Taehoon and Li, Ki-Joune},
title = {Diffoot: Graph-Conditioned Diffusion Model for Predicting Football Player Movements},
booktitle = {Proceedings of the 7th International Conference on Big Data Engineering (BDE '25)},
year = {2025},
pages = {14--22},
publisher = {ACM},
doi = {10.1145/3775050.3775053},
url = {https://doi.org/10.1145/3775050.3775053}
}
Relseased under MIT License

