Skip to content

minsuh99/Diffoot

Repository files navigation

Diffoot (Modifying)

Soure code of Diffoot - Graph-Conditioned Diffusion Model for Predicting Football Player Movements

(25.07.20) Submitted paper for BDE 2025 (2025 7th International Conference on Big Data Engineering)

(25.08.12) Paper Accpeted (Will be Published, ACM ISBN: 979-8-4007-1936-3)

(25.09.25) Best Presentation Award

(25.12.20) Conference Proceedings is Published! (BDE '25: Proceedings of the 2025 7th International Conference on Big Data Engineering / ISBN: 979-8-4007-1936-3)

FrameWork

Framework

Results

Results

Requirements

Use requirements.txt

pip install requirements.txt

Here's the main packages' versions below:

python=3.10
torch==2.4.0+cu121
floodlight==0.5.0
pandas == 2.2.3
numpy == 2.2.4
matplotlib == 3.10.1

Get the data

Download the raw data here

Reference github

idsse-data

LauireOnTracking

Metrica Sports

    SoccerTrajPredict/
                ├── utils/                          # Util codes
                │      ├── data_utils.py            # utils for data processing
                |      ├── graph_utils.py           # utils for building graph data
                │      ├── data_processing.py       # processing tools from idsse-data
                │      ├── Metrica_EPV.py           # Tools from LauireOnTracking
                │      ├── Metrica_IO.py            
                │      ├── Metrica_PitchControl.py            
                │      ├── Metrica_Velocities.py            
                │      ├── Metrica_Viz.py       
                │      └── utils.py                 # essential tools from references
                ├── models/                         # Model codes
                │      ├── Diffoot.py               # Main diffusion model of Diffoot
                |      ├── Diffoot_modules.py       # Denoising network of Diffoot
                |      └── encoder.py               # Encoder model codes
                │
                ├── make_dataset.py             # Generating Dataset
                └── main_for_Diffoot.py         # Main.py for diffusion model
                │
                ├── requirements.txt            # Dependencies
                |
                └── README.md                   # Project documentation

Citation

@inproceedings{Park2025Diffoot,
  author = {Park, Minsuh and Kim, Kyoung-Sook and Kim, Taehoon and Li, Ki-Joune},
  title = {Diffoot: Graph-Conditioned Diffusion Model for Predicting Football Player Movements},
  booktitle = {Proceedings of the 7th International Conference on Big Data Engineering (BDE '25)},
  year = {2025},
  pages = {14--22},
  publisher = {ACM},
  doi = {10.1145/3775050.3775053},
  url = {https://doi.org/10.1145/3775050.3775053}
}

License

Relseased under MIT License

About

Defending team player trajectory prediction in football

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages