-
Notifications
You must be signed in to change notification settings - Fork 92
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1191 from mindsdb/new_ts_defaults
[ENH] New ts defaults
- Loading branch information
Showing
6 changed files
with
147 additions
and
46 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
from typing import Dict, List, Union, Optional | ||
from copy import deepcopy | ||
|
||
import numpy as np | ||
import pandas as pd | ||
|
||
from lightwood.helpers.log import log | ||
from lightwood.encoder.base import BaseEncoder | ||
from lightwood.mixer.base import BaseMixer | ||
from lightwood.mixer.xgboost import XGBoostMixer | ||
from lightwood.api.types import PredictionArguments, TimeseriesSettings | ||
from lightwood.data.encoded_ds import EncodedDs, ConcatedEncodedDs | ||
|
||
|
||
class XGBoostArrayMixer(BaseMixer): | ||
"""XGBoost-based model, intended for usage in forecasting tasks.""" | ||
models: List[XGBoostMixer] | ||
submodel_stop_after: float | ||
target: str | ||
supports_proba: bool | ||
ts_analysis: Dict | ||
tss: TimeseriesSettings | ||
|
||
def __init__( | ||
self, | ||
stop_after: float, | ||
target: str, | ||
dtype_dict: Dict[str, str], | ||
input_cols: List[str], | ||
fit_on_dev: bool, | ||
target_encoder: BaseEncoder, | ||
ts_analysis: Dict[str, object], | ||
use_stl: bool, | ||
tss: TimeseriesSettings | ||
): | ||
super().__init__(stop_after) | ||
self.tss = tss | ||
self.horizon = tss.horizon | ||
self.submodel_stop_after = stop_after / self.horizon | ||
self.target = target | ||
self.offset_pred_cols = [f'{self.target}_timestep_{i}' for i in range(1, self.horizon)] | ||
if set(input_cols) != {self.tss.order_by}: | ||
input_cols.remove(self.tss.order_by) | ||
for col in self.offset_pred_cols: | ||
dtype_dict[col] = dtype_dict[self.target] | ||
self.models = [XGBoostMixer(self.submodel_stop_after, | ||
target_col, | ||
dtype_dict, | ||
input_cols, | ||
False, # fit_on_dev, | ||
False, # use_optuna | ||
target_encoder) | ||
for _, target_col in zip(range(self.horizon), [target] + self.offset_pred_cols)] | ||
self.ts_analysis = ts_analysis | ||
self.supports_proba = False | ||
self.use_stl = False | ||
self.stable = False | ||
|
||
def _fit(self, train_data: EncodedDs, dev_data: EncodedDs, submodel_method='fit') -> None: | ||
original_train = deepcopy(train_data.data_frame) | ||
original_dev = deepcopy(dev_data.data_frame) | ||
|
||
for timestep in range(self.horizon): | ||
getattr(self.models[timestep], submodel_method)(train_data, dev_data) | ||
|
||
# restore dfs | ||
train_data.data_frame = original_train | ||
dev_data.data_frame = original_dev | ||
|
||
def fit(self, train_data: EncodedDs, dev_data: EncodedDs) -> None: | ||
log.info('Started fitting LGBM models for array prediction') | ||
self._fit(train_data, dev_data, submodel_method='fit') | ||
|
||
def partial_fit(self, train_data: EncodedDs, dev_data: EncodedDs, args: Optional[dict] = None) -> None: | ||
log.info('Updating array of LGBM models...') | ||
self._fit(train_data, dev_data, submodel_method='partial_fit') | ||
|
||
def __call__(self, ds: Union[EncodedDs, ConcatedEncodedDs], | ||
args: PredictionArguments = PredictionArguments()) -> pd.DataFrame: | ||
if args.predict_proba: | ||
log.warning('This model does not output probability estimates') | ||
|
||
original_df = deepcopy(ds.data_frame) | ||
length = sum(ds.encoded_ds_lengths) if isinstance(ds, ConcatedEncodedDs) else len(ds) | ||
ydf = pd.DataFrame(0, # zero-filled | ||
index=np.arange(length), | ||
columns=[f'prediction_{i}' for i in range(self.horizon)]) | ||
|
||
for timestep in range(self.horizon): | ||
ydf[f'prediction_{timestep}'] = self.models[timestep](ds, args)['prediction'].values | ||
|
||
if self.models[0].positive_domain: | ||
ydf = ydf.clip(0) | ||
|
||
ydf['prediction'] = ydf.values.tolist() | ||
ds.data_frame = original_df | ||
return ydf[['prediction']] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters