Skip to content

Personal Project: A comprehensive end-to-end MLOps platform for developing, deploying, and monitoring machine learning models at scale. This enterprise-grade solution integrates modern ML engineering practices with robust DevOps principles to streamline the entire ML lifecycle.

Notifications You must be signed in to change notification settings

michaelearncoding/MLOps-Hands-on-Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

2 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Enterprise ML Platform

Python Docker Kubernetes Azure License

Personal Project: A comprehensive end-to-end MLOps platform for developing, deploying, and monitoring machine learning models at scale. This enterprise-grade solution integrates modern ML engineering practices with robust DevOps principles to streamline the entire ML lifecycle.

๐Ÿ“‹ Table of Contents

๐Ÿ—๏ธ Architecture Overview

The Enterprise ML Platform is built on a modular architecture that separates concerns while maintaining seamless integration between components:

Enterprise ML Platform
โ”œโ”€โ”€ Model Training โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   โ€ข PyTorch           โ”‚
โ”‚   โ€ข TensorFlow        โ”‚    โ”Œโ”€โ”€โ”€ Model Serving
โ”‚   โ€ข XGBoost/LightGBM  โ”‚โ”€โ”€โ”€โ”€โ”ค    โ€ข Flask API
โ”‚   โ€ข LLM (BERT/GPT)    โ”‚    โ”‚    โ€ข Elasticsearch
โ”‚                       โ”‚    โ”‚    โ€ข Azure Functions
โ”œโ”€โ”€ Data Pipeline โ”€โ”€โ”€โ”€โ”€โ”€โ”ค    โ”‚
โ”‚   โ€ข Spark/Databricks  โ”‚    โ”‚
โ”‚   โ€ข Azure Data Factoryโ”œโ”€โ”€โ”€โ”€โ”ค
โ”‚   โ€ข Data Quality      โ”‚    โ”‚    โ”Œโ”€โ”€โ”€ Monitoring
โ”‚                       โ”‚    โ”‚    โ”‚    โ€ข Prometheus
โ”œโ”€โ”€ Infrastructure โ”€โ”€โ”€โ”€โ”€โ”ค    โ”‚    โ”‚    โ€ข Grafana
โ”‚   โ€ข Azure ML          โ”œโ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”ค    โ€ข Azure Monitor
โ”‚   โ€ข Kubernetes        โ”‚    โ”‚    โ”‚
โ”‚   โ€ข Docker            โ”‚    โ”‚    โ”‚
โ”‚                       โ”‚    โ”‚    โ”‚
โ””โ”€โ”€ DevOps โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”˜
    โ€ข Jenkins
    โ€ข SonarQube
    โ€ข Git

This platform enables:

  • Robust ETL pipelines with data quality validation
  • Flexible model training with multiple ML frameworks
  • Scalable model serving via REST APIs
  • Comprehensive monitoring and observability
  • Full CI/CD integration for MLOps

โœจ Key Features

  • End-to-End ML Lifecycle Management: From data ingestion to model deployment and monitoring
  • Scalable Architecture: Cloud-native design using Kubernetes for horizontal scaling
  • Model Flexibility: Support for various ML frameworks (XGBoost, LightGBM, PyTorch, BERT)
  • Robust Data Processing: ETL pipeline with data quality checks
  • Real-time Monitoring: Comprehensive metrics for model performance and system health
  • DevOps Integration: CI/CD pipelines for automated testing and deployment
  • Cloud Ready: Designed for Azure with support for Azure ML, AKS, and other services

๐Ÿงฉ Components

Data Pipeline

  • data_pipeline/spark/etl_pipeline.py: Spark-based ETL pipeline for data processing
  • data_pipeline/quality_checks/data_validator.py: Framework for validating data quality

Model Training

  • model_training/sklearn/xgboost.py: Implementation of XGBoost and LightGBM models
  • model_training/llm/bert_classifier.py: Text classification using BERT

Model Serving

  • model_serving/flask/app.py: Flask API for serving ML models
  • infrastructure/docker/Dockerfile: Docker configuration for containerizing the API

Infrastructure

  • infrastructure/kubernetes/ml-api-deployment.yaml: Kubernetes deployment configuration
  • Azure ML integration (templates and configurations)

Monitoring

  • monitoring/prometheus/prometheus-config.yaml: Prometheus configuration
  • monitoring/grafana/ml-api-dashboard.json: Grafana dashboard for monitoring

DevOps

  • Jenkins pipeline configurations
  • Integration with SonarQube for code quality

๐Ÿš€ Getting Started

Prerequisites

  • Python 3.7+
  • Docker and Docker Compose
  • Kubernetes cluster (or minikube for local development)
  • Azure account (for cloud deployment)

Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/enterprise-ml-platform.git
    cd enterprise-ml-platform
  2. Create a virtual environment and install dependencies:

    python -m venv venv
    source venv/bin/activate  # On Windows, use: venv\Scripts\activate
    pip install -r requirements.txt
  3. Build the Docker image:

    docker build -t ml-api:latest -f infrastructure/docker/Dockerfile .

Local Development Setup

  1. Start the Flask API locally:

    python model_serving/flask/app.py
  2. For local Kubernetes deployment:

    kubectl apply -f infrastructure/kubernetes/ml-api-deployment.yaml
  3. Set up monitoring:

    kubectl apply -f monitoring/prometheus/prometheus-config.yaml
    # Import the Grafana dashboard JSON file manually through the Grafana UI

๐Ÿ”„ Development Workflow

The recommended workflow for developing and extending the platform:

  1. Data Preparation: Use the ETL pipeline to process and validate your dataset

    python data_pipeline/spark/etl_pipeline.py
  2. Model Training: Train models using the provided framework

    python model_training/sklearn/xgboost.py
  3. Model Evaluation: Evaluate model performance using standard metrics

  4. Model Deployment: Deploy the model as a REST API

    # Update model path in Flask app
    docker build -t ml-api:latest -f infrastructure/docker/Dockerfile .
    kubectl apply -f infrastructure/kubernetes/ml-api-deployment.yaml
  5. Monitoring: Track model performance and system health through Grafana dashboards

๐Ÿ“ฆ Model Training and Deployment

Training a New Model

Example of training an XGBoost model:

from model_training.sklearn.xgboost import SklearnModelTrainer

trainer = SklearnModelTrainer(model_type="xgboost")
model_path, metrics = trainer.run_training_pipeline(
    data_path="./data/processed/customer_data.parquet",
    target_column="churn"
)

print(f"Model saved to {model_path}")
print(f"Model metrics: {metrics}")

Making Predictions

Once deployed, you can make predictions using the API:

curl -X POST \
  http://localhost:5000/predict/tabular \
  -H 'Content-Type: application/json' \
  -d '{
    "feature1": 0.5,
    "feature2": 1.0,
    "feature3": "category_a"
  }'

For text classification:

curl -X POST \
  http://localhost:5000/predict/text \
  -H 'Content-Type: application/json' \
  -d '{
    "text": "This is an example text for classification."
  }'

๐Ÿ” Monitoring and Observability

The platform includes:

  • Prometheus metrics: System and application performance
  • Custom ML metrics: Model predictions, drift detection
  • Grafana dashboard: Real-time visualization
  • Logging: Comprehensive logging for debugging and auditing

Access the dashboards:

  • Prometheus: http://localhost:9090
  • Grafana: http://localhost:3000

๐Ÿ”„ CI/CD Integration

The platform supports integration with Jenkins for continuous integration and deployment:

  1. Automated testing of data pipelines
  2. Model training and validation
  3. Container building and testing
  4. Deployment to staging and production environments

๐Ÿšข Production Deployment

For production deployment on Azure:

  1. Set up Azure resources (AKS, Azure ML)
  2. Configure Azure credentials
  3. Deploy using Kubernetes manifests
  4. Set up monitoring and alerts

๐Ÿ”ฎ Future Enhancements

Planned future improvements:

  • Model A/B testing framework
  • Automated hyperparameter optimization
  • Feature store integration
  • Drift detection and automated retraining
  • Enhanced security features

๐Ÿค Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

๐Ÿ“ License

This project is licensed under the MIT License - see the LICENSE file for details.


Contact

If you have any questions or feedback, please open an issue or contact [email protected].

About

Personal Project: A comprehensive end-to-end MLOps platform for developing, deploying, and monitoring machine learning models at scale. This enterprise-grade solution integrates modern ML engineering practices with robust DevOps principles to streamline the entire ML lifecycle.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published