Personal Project: A comprehensive end-to-end MLOps platform for developing, deploying, and monitoring machine learning models at scale. This enterprise-grade solution integrates modern ML engineering practices with robust DevOps principles to streamline the entire ML lifecycle.
- Architecture Overview
- Key Features
- Components
- Getting Started
- Development Workflow
- Model Training and Deployment
- Monitoring and Observability
- CI/CD Integration
- Contributing
- License
The Enterprise ML Platform is built on a modular architecture that separates concerns while maintaining seamless integration between components:
Enterprise ML Platform
โโโ Model Training โโโโโโ
โ โข PyTorch โ
โ โข TensorFlow โ โโโโ Model Serving
โ โข XGBoost/LightGBM โโโโโโค โข Flask API
โ โข LLM (BERT/GPT) โ โ โข Elasticsearch
โ โ โ โข Azure Functions
โโโ Data Pipeline โโโโโโโค โ
โ โข Spark/Databricks โ โ
โ โข Azure Data Factoryโโโโโโค
โ โข Data Quality โ โ โโโโ Monitoring
โ โ โ โ โข Prometheus
โโโ Infrastructure โโโโโโค โ โ โข Grafana
โ โข Azure ML โโโโโโผโโโโโค โข Azure Monitor
โ โข Kubernetes โ โ โ
โ โข Docker โ โ โ
โ โ โ โ
โโโ DevOps โโโโโโโโโโโโโโ โโโโโโ
โข Jenkins
โข SonarQube
โข Git
This platform enables:
- Robust ETL pipelines with data quality validation
- Flexible model training with multiple ML frameworks
- Scalable model serving via REST APIs
- Comprehensive monitoring and observability
- Full CI/CD integration for MLOps
- End-to-End ML Lifecycle Management: From data ingestion to model deployment and monitoring
- Scalable Architecture: Cloud-native design using Kubernetes for horizontal scaling
- Model Flexibility: Support for various ML frameworks (XGBoost, LightGBM, PyTorch, BERT)
- Robust Data Processing: ETL pipeline with data quality checks
- Real-time Monitoring: Comprehensive metrics for model performance and system health
- DevOps Integration: CI/CD pipelines for automated testing and deployment
- Cloud Ready: Designed for Azure with support for Azure ML, AKS, and other services
data_pipeline/spark/etl_pipeline.py
: Spark-based ETL pipeline for data processingdata_pipeline/quality_checks/data_validator.py
: Framework for validating data quality
model_training/sklearn/xgboost.py
: Implementation of XGBoost and LightGBM modelsmodel_training/llm/bert_classifier.py
: Text classification using BERT
model_serving/flask/app.py
: Flask API for serving ML modelsinfrastructure/docker/Dockerfile
: Docker configuration for containerizing the API
infrastructure/kubernetes/ml-api-deployment.yaml
: Kubernetes deployment configuration- Azure ML integration (templates and configurations)
monitoring/prometheus/prometheus-config.yaml
: Prometheus configurationmonitoring/grafana/ml-api-dashboard.json
: Grafana dashboard for monitoring
- Jenkins pipeline configurations
- Integration with SonarQube for code quality
- Python 3.7+
- Docker and Docker Compose
- Kubernetes cluster (or minikube for local development)
- Azure account (for cloud deployment)
-
Clone the repository:
git clone https://github.com/yourusername/enterprise-ml-platform.git cd enterprise-ml-platform
-
Create a virtual environment and install dependencies:
python -m venv venv source venv/bin/activate # On Windows, use: venv\Scripts\activate pip install -r requirements.txt
-
Build the Docker image:
docker build -t ml-api:latest -f infrastructure/docker/Dockerfile .
-
Start the Flask API locally:
python model_serving/flask/app.py
-
For local Kubernetes deployment:
kubectl apply -f infrastructure/kubernetes/ml-api-deployment.yaml
-
Set up monitoring:
kubectl apply -f monitoring/prometheus/prometheus-config.yaml # Import the Grafana dashboard JSON file manually through the Grafana UI
The recommended workflow for developing and extending the platform:
-
Data Preparation: Use the ETL pipeline to process and validate your dataset
python data_pipeline/spark/etl_pipeline.py
-
Model Training: Train models using the provided framework
python model_training/sklearn/xgboost.py
-
Model Evaluation: Evaluate model performance using standard metrics
-
Model Deployment: Deploy the model as a REST API
# Update model path in Flask app docker build -t ml-api:latest -f infrastructure/docker/Dockerfile . kubectl apply -f infrastructure/kubernetes/ml-api-deployment.yaml
-
Monitoring: Track model performance and system health through Grafana dashboards
Example of training an XGBoost model:
from model_training.sklearn.xgboost import SklearnModelTrainer
trainer = SklearnModelTrainer(model_type="xgboost")
model_path, metrics = trainer.run_training_pipeline(
data_path="./data/processed/customer_data.parquet",
target_column="churn"
)
print(f"Model saved to {model_path}")
print(f"Model metrics: {metrics}")
Once deployed, you can make predictions using the API:
curl -X POST \
http://localhost:5000/predict/tabular \
-H 'Content-Type: application/json' \
-d '{
"feature1": 0.5,
"feature2": 1.0,
"feature3": "category_a"
}'
For text classification:
curl -X POST \
http://localhost:5000/predict/text \
-H 'Content-Type: application/json' \
-d '{
"text": "This is an example text for classification."
}'
The platform includes:
- Prometheus metrics: System and application performance
- Custom ML metrics: Model predictions, drift detection
- Grafana dashboard: Real-time visualization
- Logging: Comprehensive logging for debugging and auditing
Access the dashboards:
- Prometheus:
http://localhost:9090
- Grafana:
http://localhost:3000
The platform supports integration with Jenkins for continuous integration and deployment:
- Automated testing of data pipelines
- Model training and validation
- Container building and testing
- Deployment to staging and production environments
For production deployment on Azure:
- Set up Azure resources (AKS, Azure ML)
- Configure Azure credentials
- Deploy using Kubernetes manifests
- Set up monitoring and alerts
Planned future improvements:
- Model A/B testing framework
- Automated hyperparameter optimization
- Feature store integration
- Drift detection and automated retraining
- Enhanced security features
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
If you have any questions or feedback, please open an issue or contact [email protected].