Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 20 additions & 2 deletions reference/api/settings.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -2435,10 +2435,11 @@ These embedder objects may contain the following fields:
| **`revision`** | String | Empty | Model revision hash |
| **`distribution`** | Object | Empty | Describes the natural distribution of search results. Must contain two fields, `mean` and `sigma`, each containing a numeric value between `0` and `1` |
| **`request`** | Object | Empty | A JSON value representing the request Meilisearch makes to the remote embedder |
| **`response`** | Object | Empty | A JSON value representing the request Meilisearch expects from the remote embedder |
| **`response`** | Object | Empty | A JSON value representing the response Meilisearch expects from the remote embedder |
| **`binaryQuantized`** | Boolean | Empty | Once set to `true`, irreversibly converts all vector dimensions to 1-bit values |
| **`indexingEmbedder`** | Object | Empty | Configures embedder to vectorize documents during indexing |
| **`searchEmbedder`** | Object | Empty | Configures embedder to vectorize search queries |
| **`pooling`** | String | `"useModel"` | Pooling method for Hugging Face embedders |

### Get embedder settings

Expand All @@ -2450,7 +2451,7 @@ Get the embedders configured for an index.

| Name | Type | Description |
| :---------------- | :----- | :------------------------------------------------------------------------ |
| **`index_uid`** * | String | [`uid`](/learn/getting_started/indexes#index-uid) of the requested index |
| **`index_uid`** * | String | [`uid`](/learn/getting_started/indexes#index-uid) of the requested index |

#### Example

Expand Down Expand Up @@ -2503,6 +2504,7 @@ Partially update the embedder settings for an index. When this setting is update
"response": { … },
"headers": { … },
"binaryQuantized": <Boolean>,
"pooling": <String>,
"indexingEmbedder": { … },
"searchEmbedder": { … }
}
Expand Down Expand Up @@ -2762,6 +2764,22 @@ This option can be useful when working with large Meilisearch projects. Consider
**Activating `binaryQuantized` is irreversible.** Once enabled, Meilisearch converts all vectors and discards all vector data that does fit within 1-bit. The only way to recover the vectors' original values is to re-vectorize the whole index in a new embedder.
</Capsule>

##### `pooling`

Configure how Meilisearch should merge individual tokens into a single embedding.

`pooling` must be one of the following strings:

- `"useModel"`: Meilisearch will fetch the pooling method from the model configuration. Default value for new embedders
- `"forceMean"`: always use mean pooling. Default value for embedders created in Meilisearch \<=v1.13
- `"forceCls"`: always use CLS pooling

If in doubt, use `"useModel"`. `"forceMean"` and `"forceCls"` are compatibility options that might be necessary for certain embedders and models.

`pooling` is optional for embedders with the `huggingFace` source.

`pooling` is invalid for all other embedder sources.

##### `indexingEmbedder` and `searchEmbedder` <NoticeTag type="experimental" label="experimental" />

When using a [composite embedder](#composite-embedders), configure separate embedders Meilisearch should use when vectorizing documents and search queries.
Expand Down