Skip to content

mblondel/projection-losses

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Projection losses

Python implementation of "Structured Prediction with Projection Oracles".

Supported polytopes

  • Probability simplex
  • Unit cube
  • Knapsack polytope
  • Birkhoff polytope
  • Permutahedron
  • Order simplex
  • Cartesian products

Installation

Simply copy relevant files to your project.

References

[1]SparseMAP: Differentiable Sparse Structured Inference. Vlad Niculae, André F. T. Martins, Mathieu Blondel, Claire Cardie. In Proc. of ICML 2018. [arXiv]
[2]Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms. Mathieu Blondel, André F. T. Martins, Vlad Niculae. In Proc. of AISTATS 2019. [arXiv]
[3]Learning with Fenchel-Young Losses. Mathieu Blondel, André F. T. Martins, Vlad Niculae. Preprint. [arXiv]
[4]Structured Prediction with Projection Oracles. Mathieu Blondel. In Proc. of NeurIPS 2019. [arXiv]

Author

  • Mathieu Blondel, 2019

About

Python implementation of projection losses.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages