from shelved_cache import PersistentCache
Persistent cache implementation for Python cachetools.
Behaves like any Cache
implementation, but entries are persisted to disk.
Original repository: https://github.com/mariushelf/shelved_cache
from shelved_cache import PersistentCache
from cachetools import LRUCache
filename = 'mycache'
# create persistency around an LRUCache
pc = PersistentCache(LRUCache, filename=filename, maxsize=2)
# we can now use the cache like a normal LRUCache.
# But: the cache is persisted to disk.
pc["a"] = 42
pc["b"] = 43
assert pc["a"] == 42
assert pc["b"] == 43
# close the file
pc.close()
# Now in the same script or in another script, we can re-load the cache:
pc2 = PersistentCache(LRUCache, filename=filename, maxsize=2)
assert pc2["a"] == 42
assert pc2["b"] == 43
Just like a regular cachetools.Cache
, the PersistentCache
can be used with
cachetools
' cached
decorator:
import cachetools
from shelved_cache import PersistentCache
from cachetools import LRUCache
filename = 'mycache'
pc = PersistentCache(LRUCache, filename, maxsize=2)
@cachetools.cached(pc)
def square(x):
print("called")
return x * x
assert square(3) == 9
# outputs "called"
assert square(3) == 9
# no output because the cache is used
If you want to decorate multiple functions, you need to use a
new instance of PersistentCache
for each function.
Make sure that each cache uses a different file name.
import cachetools
from shelved_cache import PersistentCache
from cachetools import LRUCache
@cachetools.cached(PersistentCache(LRUCache, "square.cache", maxsize=100))
def square(x):
return x * x
@cachetools.cached(PersistentCache(LRUCache, "cube.cache", maxsize=100))
def cube(x):
return x * x * x
assert square(2) == 4
assert cube(2) == 8
See usage examples above.
The package contains equivalents for cachetools
' cached
and cachedmethod
decorators which support wrapping async methods. You can find them in the decorators
submodule.
They support both synchronous and asynchronous functions and methods.
Examples:
from shelved_cache import cachedasyncmethod
from cachetools import LRUCache
class A:
# decorate an async method:
@cachedasyncmethod(lambda self: LRUCache(2))
async def asum(self, a, b):
return a + b
a = A()
assert await a.asum(1, 2) == 3
class S:
@cachedasyncmethod(lambda self: LRUCache(2))
def sum(self, a, b):
return a + b
s = S()
assert s.sum(1, 2) == 3
Using the autotuple_hashkey
function, list arguments are automatically converted
to tuples, so that they support hashing.
Example:
from cachetools import cached, LRUCache
from shelved_cache.keys import autotuple_hashkey
@cached(LRUCache(2), key=autotuple_hashkey)
def sum(values):
return values[0] + values[1]
# fill cache
assert sum([1, 2]) == 3
# access cache
assert sum([1, 2]) == 3
- drop support for Python 3.7 and 3.8
- add support for Python 3.12 and 3.13
- note: shelved_cache does not seem to work with Python 3.13 on Windows
- note about decorating multiple functions in the README
- improvement in async decorators
- fix for Windows users
- add Windows and MacOS to test suite
- add support for Python 3.10 and 3.11
- better error message when trying to use the same file for multiple caches
- CI/CD pipeline
- fixes for documentation
- improved error handling
- cachetools by Thomas Kemmer
- asyncache by hephex
Author: Marius Helf ([email protected])
License: MIT -- see LICENSE