Binary relation over sets X and Y is a new set of ordered pairs (x, y) consisting of elements x in X and y in Y.
Сhecking of belonging to:
-
Equivalence relation: if Binary Relation is Reflexive, Symmetric and Transitive
-
Order relation: if Binary Relation is Reflexive, Antisymmetric and Transitive
----------M-------------------------------------------------------------------------------
(1, 2, 3, 4)
----------M * M---------------------------------------------------------------------------
(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)
(4,1) (4,2) (4,3) (4,4)
----------M * M (with tau)----------------------------------------------------------------
(1,1) - (1,3) -
- (2,2) - (2,4)
(3,1) - (3,3) -
- (4,2) - (4,4)
----------properties of binary relations--------------------------------------------------
reflexive_relation +
symmetric_relation +
antisymmetric_relation - (4,2) in taus, and (2,4) in taus, but 4 != 2
transitive_relation +
----------types of binary relations-------------------------------------------------------
equivalence relation +
order relation -