Sample Code (Python) and Data for Studying Machine Learning Algorithms
1.Required Library: Numpy, Matplot, Scipy, Tensorflow
2.Knowledge of following topics
- Linear algebra
- Diffential formula (Matrices, Composite Function)
- Gradient Descent
- Vectorized Implementation with Numpy
Please refer to http://
- [lr_data1.txt] - Single Feature Example (X, Y) from Andrew Ng's ML class
- [lr_data2_multi.txt] - Multiple Feature Example (X1, X2, Y) from Andrew Ng's ML class
- [lr_data3.txt] - Single Freture Example. X0 is included in data file(1, X1, Y). from 'Machine Learning in Action'
- [_test_linear_regression*.py] - Test Code for Linear Regression with input data
- [_test_linear_regression*_tf.py] - Test Code using TensorFlow for Linear Regression
- [linear_regression.py] - Functions for Linear regression
- [linear_regression_tf.py] - Functions for Linear regression (TensorFlow Version)
- [ml_utils.py] - Utility functions (i.e., featureNormalize(X))
- [logistic_data1.txt] - Example from Andrew Ng's ML class (X1, X2, Y)
- [logistic_data2_reg.txt] - Example form Andrew Ng's ML class (+Polynomial and Regularization)
- [logistic_data3.txt] - Example from 'Machine Learning in Action' (X1, X2, Y)
- [_test_logistic_regression.py] - Test Code for Logistic Regression with input data 1,3
- [_test_logistic_regression2.py] - Test Code for Logistic Regression with input data 2
- [_test_logistic_regression_tf.py] - Test Code using TensorFlow with input data 1,3
- [logistic_regression.py] - Functions for Logistic regression
- [logistic_regression_tf.py] - Functions for Logistic regression (TensorFlow Version)
- [ml_utils.py] - Utility functions (i.e., mapFeature(X): Polynomial Extension)
- [mnist/*] - data file from MNIST
- [_test_softmax.py] - Test code for Softmax Regression with Mnist Data
- [_test_softmax_tf.py] - Test code for Tensorflow Softmax Regression with Mnist Data
- [softmax.py] - Functions for Softmax Regression (Ref. UFLDL Tutorial)
- [softmax_tf.py] - Functions for Softmax Regression (TensorFlow version)
- [data_utils.py] - Utility Function for data handlng (load MNIST data)
- [ml_utils.py] - Utility Function (onehotTransform(X)): Categoricla Data to one-hot)
- Stanford Machine Learning Class in Coursera
- UFLDL Tutorial
- Tensor Flow