Skip to content

Commit

Permalink
train model
Browse files Browse the repository at this point in the history
  • Loading branch information
Kye committed Nov 20, 2023
1 parent c38d3cf commit f09dd9e
Show file tree
Hide file tree
Showing 4 changed files with 194 additions and 0 deletions.
2 changes: 2 additions & 0 deletions alr_transformer/__init__.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,4 @@
from alr_transformer.model import ALRTransformer
from alr_transformer.alr_block import ALRBlock

__all__ = ['ALRTransformer', 'ALRBlock']
83 changes: 83 additions & 0 deletions alr_transformer/at.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import nn

# helper function


def exists(val):
return val is not None


def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out

return inner


# top k filtering


def top_k(logits, thres=0.9):
k = int((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float("-inf"))
probs.scatter_(1, ind, val)
return probs


class AutoregressiveWrapper(nn.Module):
def __init__(self, net, max_seq_len=2048, pad_value=0):
super().__init__()
self.max_seq_len = max_seq_len
self.pad_value = pad_value
self.net = net

@torch.no_grad()
@eval_decorator
def generate(
self,
start_tokens,
seq_len,
eos_token=None,
temperature=1.0,
filter_thres=0.9,
**kwargs
):
b, t, device = *start_tokens.shape, start_tokens.device

out = start_tokens

for _ in range(seq_len):
logits = self.net(out, **kwargs)[:, -1, :]

filtered_logits = top_k(logits, thres=filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)

sample = torch.multinomial(probs, 1)

out = torch.cat((out, sample), dim=-1)

if exists(eos_token):
is_eos_token = out == eos_token

if is_eos_token.any(dim=-1).all():
# mask out everything after the eos tokens
shifted_is_eos_tokens = F.pad(is_eos_token, (1, -1))
mask = shifted_is_eos_tokens.float().cumsum(dim=-1) >= 1
out = out.masked_fill(mask, self.pad_value)
break

out = out[:, t:]
return out

def forward(self, x, **kwargs):
x_inp, x_labels = x[:, :-1], x[:, 1:]
logits = self.net(x_inp, **kwargs)
return F.cross_entropy(rearrange(logits, "b c n -> b n c"), x_labels)
Binary file added data/enwik8.gz
Binary file not shown.
109 changes: 109 additions & 0 deletions train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
import gzip
import random

import numpy as np
import torch
import torch.optim as optim
import tqdm
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset

from alr_transformer.at import AutoregressiveWrapper
from alr_transformer.model import ALRTransformer

# constants

NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
SEQ_LEN = 1024

# helpers


def cycle(loader):
while True:
for data in loader:
yield data


def decode_token(token):
return str(chr(max(32, token)))


def decode_tokens(tokens):
return "".join(list(map(decode_token, tokens)))


# instantiate GPT-like decoder model

model = ALRTransformer(num_tokens=256, dim=512, depth=8)

model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
model.cuda()

# prepare enwik8 data

with gzip.open("./data/enwik8.gz") as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
trX, vaX = np.split(X, [int(90e6)])
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX)


class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len

def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,))
full_seq = self.data[rand_start : rand_start + self.seq_len + 1].long()
return full_seq.cuda()

def __len__(self):
return self.data.size(0) // self.seq_len


train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))

# optimizer

optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)

# training

for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
model.train()

for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
loss.backward()

print(f"training loss: {loss.item()}")
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()

if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
loss = model(next(val_loader))
print(f"validation loss: {loss.item()}")

if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset)[:-1]
prime = decode_tokens(inp)
print(f"%s \n\n %s", (prime, "*" * 100))

sample = model.generate(inp[None, ...], GENERATE_LENGTH)
output_str = decode_tokens(sample[0])
print(output_str)

0 comments on commit f09dd9e

Please sign in to comment.